中山大学学报(自然科学版)(中英文)2024,Vol.63Issue(1):166-172,7.DOI:10.13471/j.cnki.acta.snus.2022A089
Laplace方程上半平面边值问题中的动态采样
Dynamical sampling in the boundary value problem of Laplace equation in upper half-plane
摘要
Abstract
For the boundary value problem of Laplace equation in upper half plane,the sampling ofϕy∗f to recover the boundary value f is studied.In order to obtain the stability reconstruction of sam-pling,Shannon sampling theorem shows that the sampling rate must satisfy certain conditions.The sta-bility of sampling inequality is solved by analyzing the minimum eigenvalue of the sample diffusion matrix and using the Remez-Turan inequality to avoid the blind spot in the case of insufficient sampling rate in the bandlimited function space.关键词
动态采样/频带有限函数/Remez-Turan不等式/Laplace方程Key words
dynamic sampling/bandlimited function/Remez-Turan inequality/Laplace equation分类
数理科学引用本文复制引用
方黄,李松华,彭宏杰..Laplace方程上半平面边值问题中的动态采样[J].中山大学学报(自然科学版)(中英文),2024,63(1):166-172,7.基金项目
湖南省自然科学基金(2020JJ4330) (2020JJ4330)
湖南省教育厅重点项目(19A196) (19A196)