| 注册
首页|期刊导航|遵义医科大学学报|基于空间和解剖结构信息的多切片核应用于阿尔茨海默症分类

基于空间和解剖结构信息的多切片核应用于阿尔茨海默症分类

吴应江 张春明 王攀科 侯洁

遵义医科大学学报2024,Vol.47Issue(1):25-37,13.
遵义医科大学学报2024,Vol.47Issue(1):25-37,13.

基于空间和解剖结构信息的多切片核应用于阿尔茨海默症分类

Multislice kernel based on spatial and anatomical structure information for Alzheimer's disease classification

吴应江 1张春明 1王攀科 1侯洁1

作者信息

  • 1. 广东医科大学生物医学工程学院,广东东莞 523808
  • 折叠

摘要

Abstract

Objective To explore fast and efficient algorithms for early and accurate diagnosis of Alzheimer's disease.Methods Utilizing spatial and anatomical information of brain tissue to construct multi-slice kernels and applying them to the classification and discrimination of Alzheimer's disease.Results Cuingnet proposes a framework to include spatial and anatomical structure information in classical single kernel support vector ma-chine for Alzheimer's disease classification,and it generates more interpretable feature maps with high classifica-tion performances.However,in this framework,the spatial regularization parameter is restricted to be equal to the anatomical one for convenience of using single kernel model.In addition,vectorization of a higher-order ten-sorial image destroys the intrinsic structure and a large-scale matrix is also inevitably generated to define the adja-cency relation between every pair of voxels,so it results in intensive computation loads.In this manuscript,the Cuingnet framework is improved by construction of two new types of multislice kernels wherein spatial and ana-tomical Laplacian matrices derived from every slice are used to retain the adjacency relations,and the widespread sequential minimal optimization algorithm is adopted to estimate the parameters in a multiple kernel learning mod-el.In this manner,the above large-scale matrix computation in the original Cuingnet framework is avoided.Conclusion Experimental results demonstrate that computing speed is increased hundreds of times,while high classification accuracy is maintained.

关键词

神经影像/空间正则化/解剖正则化/张量核函数

Key words

neuroimaging/anatomical regularization/spatial regularization/tensorial kernel function

分类

医药卫生

引用本文复制引用

吴应江,张春明,王攀科,侯洁..基于空间和解剖结构信息的多切片核应用于阿尔茨海默症分类[J].遵义医科大学学报,2024,47(1):25-37,13.

基金项目

广东省自然科学基金资助项目(NO:2022A1515140132),中国高校产学研创新基金(NO:2022IT119). (NO:2022A1515140132)

遵义医科大学学报

OACSTPCD

2096-8159

访问量0
|
下载量0
段落导航相关论文