基于低秩张量补全的非侵入式负荷监测缺失数据修复方法OA北大核心CSTPCD
非侵入式负荷监测技术(non-intrusive load monitoring,NILM)作为实现智能电网用户侧细粒度感知的重要手段,有助于实现需求响应、提高“源-网-荷”互动效率和优化用能,助力实现“30·60目标”。高质量的量测信息是数据驱动型NILM的基础,但由于数据采集装置故障、通道拥塞以及延时等都会导致数据缺失,尤其是严重的连续性缺失,由此造成非侵入式负荷监测与分解的精度下降,影响用户画像、需求响应等高级应用。因此,针对该问题,提出了一种基于CP分解的正则化低秩张量补全的量测数据缺失修复方法。算法突破传统单维数据处理局限,对NILM多维量测数据构建了三阶观测张量,从而利用数据内部时序关联性和参量维度间电气关联性进行正则化低秩张量补全。并针对每次核范数计算过程中奇异值分解计算量过大问题,采用基于CP因子矩阵分解的核范数计算降低计算量,减少计算时长,并证明了变换的等效性。最后基于NILM公开数据集iAWE进行了实验,实验结果表明所提出的方法可以提高数据修复精度,在高缺失率和连续缺失情况下仍能有较好地补全效果,并且通过非侵入式负荷分解实验证明其可有效提高分解精度,对智能电网提升细粒度感知能力具有良好的实际意义。
杨挺;叶芷杉;徐嘉成;杨振宁;
智能电网教育部重点实验室(天津大学),天津市南开区300072
动力与电气工程
数据修复低秩张量核范数非侵入式负荷监测连续性缺失
《电网技术》 2024 (001)
P.394-404 / 11
国家重点研发计划项目(2022YFB2403800);国家自然科学基金项目(61971305);天津市自然科学基金项目(21JCZDJC00640)。
评论