|国家科技期刊平台
首页|期刊导航|测控技术|基于LSTM-ECGRU的固体火箭发动机性能预测方法

基于LSTM-ECGRU的固体火箭发动机性能预测方法OACSTPCD

中文摘要

随着数据挖掘技术、测量技术的不断发展,为了满足火箭发动机参数探索的需要,使用数据挖掘技术利用历史数据对发动机各种参数进行预测成为火箭发动机在数据探索方面新的发展方向。同时,火箭发动机的地面点火试验在向着尽可能还原真实运行环境的方向发展。基于以上情况,引入在地面点火试验中的环境因素与设计因素共同作为模型的输入变量,以此来补充环境因素对性能参数的影响。根据试验对象数据特性,使用长短期记忆(Long Short-Term Memory,LSTM)神经网络对性能进行初步预测。为了能够减少整体模型误差和引入环境因素带来的误差,提高模型预测精度和泛化能力,提出了基于误差修正分析和趋势判断的误差修正门控单元(Error Correction Gate Recurrent Unit,ECGRU)神经网络模型对初步预测结果进行误差修正。同时结合环境参数特点,设计规划ECGRU模型输入、输出参数的计算规则。基于历史试验数据完成对比试验,验证了新模型具有较高的预测精度和泛化能力。

张明楠;宫秀良;程博;胡小梅;

上海大学机电工程与自动化学院上海市智能制造及机器人重点实验室,上海200444西北工业大学网络空间安全学院,陕西西安710072 中国航天科工集团第六研究院六〇一所,内蒙古呼和浩特010076中国航天科工集团第六研究院六〇一所,内蒙古呼和浩特010076 西北工业大学计算机学院,陕西西安710072

性能预测LSTMECGRU误差修正

《测控技术》 2024 (001)

P.77-82 / 6

装备预研专用技术项目(304030107)。

10.19708/j.ckjs.2023.05.232

评论