基于BERT-BiLSTM-CRF模型的油气领域命名实体识别OA
针对油气领域知识图谱构建过程中命名实体识别使用传统方法存在实体特征信息提取不准确、识别效率低的问题,提出了一种基于BERT-BiLSTM-CRF模型的命名实体识别研究方法。该方法首先利用BERT(bidirectional encoder representations from transformers)预训练模型得到输入序列语义的词向量;然后将训练后的词向量输入双向长短期记忆网络(bi-directional long short-term …查看全部>>
高国忠;李宇;华远鹏;吴文旷
长江大学地球物理与石油资源学院,湖北武汉430100长江大学地球物理与石油资源学院,湖北武汉430100长江大学地球物理与石油资源学院,湖北武汉430100中国石油勘探开发研究院,北京100083
计算机与自动化
油气领域命名实体识别BERT双向长短期记忆网络条件随机场BERT-BiLSTM-CRF模型
《长江大学学报(自然科学版)》 2024 (1)
P.57-65,9
教育部中国高校产学研创新基金项目“基于5G+大数据的教育知识图谱平台构建”(2021BCF03006)。
评论