基于伪标签和迁移学习的双关语识别方法OA北大核心CSTPCD
Pun detection basd on pseudo-label and transfer learning
针对双关语样本短缺问题,研究提出了基于伪标签和迁移学习的双关语识别模型(pun detection based on Pseudo-label and transfer learning).该模型利用上下文语义、音素向量和注意力机制生成伪标签;然后,迁移学习和置信度结合挑选可用的伪标签;最后,将伪标签数据和真实数据混合到网络中进行训练,重复伪标签标记和混合训练过程.一定程度上解决了双关语样本量少且获取困难的问题.使用该模型在SemEval 2017 shared task 7以及Pun of the Day 数据集上进行双关语检测实验,结果表明模型性能均优于现有主流双关语识别方法.
To address the problem of shortage of the pun samples,this paper proposes a pun recognition model based on pseudo-label speech-focused context(pun detection based on pseudo-label and transfer learning).Firstly,the model uses contextual semantics,phoneme vector and attention mechanism to generate pseudo-labels.Then,it combines transfer learning and confidence to select useful pseudo-labels.Finally,the pseudo-label data and real data are used for network theory and training,and the pseudo-label labeling and mixed training procedures are repeated.To a certain extent,the problem of small sample size and difficulty in obtaining puns has been solved.By this model,we carry out pun detection experiments on both the SemEval 2017 shared task 7 dataset and the Pun of the Day dataset.The results show that the performance of this model is better than that of the existing mainstream pun recognition methods.
姜思羽;张智恒;姜立标;马乐;陈博远;王连喜;赵亮
广东外语外贸大学 信息科学与技术学院,广州 510006||华南理工大学 软件学院,广州 510000广东外语外贸大学 信息科学与技术学院,广州 510006广州城市理工学院 机械工程学院,广州 510800广州城市理工学院 工程研究院,广州 510800华南理工大学 机械与汽车工程学院,广州 510000广东轻工职业技术学院 继续教育学院, 广州 510300
计算机与自动化
双关语检测伪标签迁移学习
pun detectionpseudo-labeltransfer learning
《重庆大学学报》 2024 (002)
51-61 / 11
广州市科技计划资助项目(202102020637,202002030227);广东外语外贸大学师生合作资助项目(21SS10).Supported by Guangzhou Science and Technology Plan Project(202102020637,202002030227)and Teacher-Student Joint Research Project on Guangdong University of Foreign Studies(21SS10).
评论