| 注册
首页|期刊导航|大数据|联邦学习的公平性研究综述

联邦学习的公平性研究综述

朱智韬 司世景 王健宗 程宁 孔令炜 黄章成 肖京

大数据2024,Vol.10Issue(1):62-85,24.
大数据2024,Vol.10Issue(1):62-85,24.DOI:10.11959/j.issn.2096-0271.2022088

联邦学习的公平性研究综述

A survey on the fairness of federated learning

朱智韬 1司世景 2王健宗 2程宁 2孔令炜 2黄章成 2肖京2

作者信息

  • 1. 平安科技(深圳)有限公司,广东 深圳 518063||中国科学技术大学,安徽 合肥 230026
  • 2. 平安科技(深圳)有限公司,广东 深圳 518063
  • 折叠

摘要

Abstract

Federated learning uses data from multiple participants to collaboratively train global models and has played an increasingly important role in recent years in facilitating inter-firm data collaboration.On the other hand,the federal learning training paradigm often faces the dilemma of insufficient data,so it is important to provide assurance of fairness to motivate more participants to contribute their valuable resources.This paper illustrates the issue of fairness in federated learning.Firstly,three classifications of fairness based on different equity goals,from model performance balance,contribution assessment equity,and elimination of group discrimination are proposed,and then we provide in-depth introduction and comparison of existing fairness promotion methods,aiming to help researchers develop new fairness promotion methods.Finally,by dissecting the needs in the process of federal learning implementation,five directions for future federated learning fairness research are proposed.

关键词

联邦学习/公平性/表现均衡/贡献衡量

Key words

federated learning/fairness/balance in performance/measure of contributions

分类

管理科学

引用本文复制引用

朱智韬,司世景,王健宗,程宁,孔令炜,黄章成,肖京..联邦学习的公平性研究综述[J].大数据,2024,10(1):62-85,24.

基金项目

广东省重点领域研发计划"新一代人工智能"重大专项(No.2021B0101400003) The Key Research and Development Program of Guangdong Province(No.2021B0101400003) (No.2021B0101400003)

大数据

OACSTPCD

2096-0271

访问量0
|
下载量0
段落导航相关论文