| 注册
首页|期刊导航|河北科技大学学报|基于文本图神经网络的小样本文本分类技术研究

基于文本图神经网络的小样本文本分类技术研究

安相成 刘保柱 甘精伟

河北科技大学学报2024,Vol.45Issue(1):52-58,7.
河北科技大学学报2024,Vol.45Issue(1):52-58,7.DOI:10.7535/hbkd.2024yx01006

基于文本图神经网络的小样本文本分类技术研究

Research on few-shot text classification techniques based on text-level-graph neural networks

安相成 1刘保柱 1甘精伟1

作者信息

  • 1. 中国电子科技集团公司第五十四研究所,河北石家庄 050051
  • 折叠

摘要

Abstract

In order to solve the problem of poor accuracy of text classification in text graph neural network with small samples,a text level graph neural network-prototypical(LGNN-Proto)was designed.An advanced pre-training language model was adopted,and the text graph neural network was used to construct the graph for each input text,then the global parameters were shared.The result of the text graph neural network was used as the input of the prototype network to classify the unlabeled text,and the validity of the new model on multiple text classification data sets was verified.The results show that the accuracy of unlabeled text classification is improved by 1%~3%compared with that of supervised learning,which requires a large number of labeled documents,and the new model is validated on multiple text classification data sets with advanced performance and lower memory consumption.The research results can provide reference for solving the problem of text classification with small sample size.

关键词

自然语言处理/小样本文本分类/预训练模型/图神经网络/原型网络

Key words

natural language processing/few-shot text classification/pre-trained model/graph neural network/prototype network

分类

信息技术与安全科学

引用本文复制引用

安相成,刘保柱,甘精伟..基于文本图神经网络的小样本文本分类技术研究[J].河北科技大学学报,2024,45(1):52-58,7.

基金项目

河北省智能化信息感知与处理重点实验室发展基金(SXX22138X002) (SXX22138X002)

LZH联合QB数据融合与共享服务项目 ()

河北科技大学学报

OA北大核心CSTPCD

1008-1542

访问量0
|
下载量0
段落导航相关论文