| 注册
首页|期刊导航|电力系统保护与控制|基于SO-PAA-GAF和AdaBoost集成学习的高压断路器故障诊断

基于SO-PAA-GAF和AdaBoost集成学习的高压断路器故障诊断

司江宽 吐松江·卡日 范想 高文胜 朱炜

电力系统保护与控制2024,Vol.52Issue(3):152-160,9.
电力系统保护与控制2024,Vol.52Issue(3):152-160,9.DOI:10.19783/j.cnki.pspc.230960

基于SO-PAA-GAF和AdaBoost集成学习的高压断路器故障诊断

Fault diagnosis of high-voltage circuit breaker based on SO-PAA-GAF and AdaBoost ensemble learning

司江宽 1吐松江·卡日 1范想 2高文胜 3朱炜1

作者信息

  • 1. 新疆大学电气工程学院,新疆 乌鲁木齐 830047
  • 2. 国网新疆电力公司哈密供电公司,新疆 哈密 839000
  • 3. 清华大学电机工程与应用电子技术系电力系统及发电设备控制和仿真国家重点实验室,北京 100084
  • 折叠

摘要

Abstract

Aiming at the low accuracy of high-voltage circuit breaker fault diagnosis under small samples and complex working conditions,a fault diagnosis method of high-voltage circuit breaker based on vibration signal processing and AdaBoost ensemble learning is proposed.First,the high-voltage circuit breaker test platform is built and the switching vibration signals are collected under 8 working conditions.Second,after absolute value processing of vibration signals,piecewise aggregate approximation(PAA)is used to do piecewise averaging,and Gramian angular field(GAF)is used to convert new output sequences into pictures.The Relief F method is used to sort the importance of the extracted high-dimensional image features.Finally,the retained important features are input into the AdaBoost ensemble learning model for fault diagnosis,and the snake optimization algorithm is used to determine the optimal PAA step size and the number of input classifier features to further improve the fault diagnosis accuracy.The comparison and analysis results with various signal processing methods and classification models indicate that picture signal and AdaBoost ensemble learning model can deal with vibration signal effectively and judge fault type accurately,which provides a new way to diagnose high-voltage circuit breaker fault accurately and reliably.

关键词

高压断路器/振动信号处理/分段聚合近似/格拉姆角场/故障诊断

Key words

high-voltage circuit breaker/vibration signal processing/piecewise aggregate approximation/Gramian angular field/fault diagnosis

引用本文复制引用

司江宽,吐松江·卡日,范想,高文胜,朱炜..基于SO-PAA-GAF和AdaBoost集成学习的高压断路器故障诊断[J].电力系统保护与控制,2024,52(3):152-160,9.

基金项目

This work is supported by the National Natural Science Foundation of China(No.52067021). 国家自然科学基金项目资助(52067021) (No.52067021)

新疆维吾尔自治区自然科学基金项目资助(2022D01C35) (2022D01C35)

新疆维吾尔自治区优秀青年科技人才培养项目资助(2019Q012) (2019Q012)

电力系统保护与控制

OA北大核心CSTPCD

1674-3415

访问量2
|
下载量0
段落导航相关论文