| 注册
首页|期刊导航|计算机工程|基于时空图注意力网络的服务机器人动态避障

基于时空图注意力网络的服务机器人动态避障

杜海军 余粟

计算机工程2024,Vol.50Issue(2):105-112,8.
计算机工程2024,Vol.50Issue(2):105-112,8.DOI:10.19678/j.issn.1000-3428.0066799

基于时空图注意力网络的服务机器人动态避障

Dynamic Obstacle Avoidance for Service Robots Based on Spatio-Temporal Graph Attention Network

杜海军 1余粟1

作者信息

  • 1. 上海工程技术大学电子电气工程学院,上海 201620
  • 折叠

摘要

Abstract

To solve the problems of collision,freezing,and the unnatural paths of service robots in dense crowds with autonomous decision-making ability,this study proposes a dynamic obstacle avoidance algorithm for service robots based on spatio-temporal graph attention network under the framework of Deep Reinforcement Learning(DRL).Spatio-temporal graph attention network represents the decision function of Proximal Policy Optimization(PPO)algorithm.First,the algorithm uses a Gated Recurrent Unit(GRU)to control the degree of memory and forgetting of the robot with respect to its environment and then extracts the time characteristics of that environment.This ensures the robot has a certain predictive effect on the movement trend of pedestrians.Second,the algorithm uses graph attention networks to obtain the spatially implicit interaction features between robots and pedestrians,enabling the robot to locate collision-free paths.Finally,the spatio-temporal graph attention network is trained under the PPO algorithm,which enables the robot to realize collision-free navigation tasks in a crowd.The algorithm is verified by simulation experiments in a dynamic closed environment of 2.5 m2 per capita.Compared with the non-learning Dynamic Window Algorithm(DWA),the navigation success rate of the proposed algorithm is improved by 71 percentage points.In addition,compared with the learning-type DSRNN-RL algorithm,the navigation success rate of the proposed algorithm is improved by 3 percentage points and the navigation path is shorter.Finally,a real-time navigation test in the Gazebo environment shows that the average inference time of the algorithm is 21.90 ms,which meets the requirements of real-time navigation.

关键词

服务机器人/动态避障/深度强化学习/时空图注意力网络/实时导航

Key words

service robot/dynamic obstacle avoidance/Deep Reinforcement Learning(DRL)/spatio-temporal graph attention network/real-time navigation

分类

信息技术与安全科学

引用本文复制引用

杜海军,余粟..基于时空图注意力网络的服务机器人动态避障[J].计算机工程,2024,50(2):105-112,8.

基金项目

上海市科委科研计划项目(17511110204). (17511110204)

计算机工程

OA北大核心CSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文