|国家科技期刊平台
首页|期刊导航|计算机工程|基于Transformer和GAN的对抗样本生成算法

基于Transformer和GAN的对抗样本生成算法OA北大核心CSTPCD

Adversarial Example Generation Algorithm Based on Transformer and GAN

中文摘要英文摘要

对抗攻击与防御是计算机安全领域的一个热门研究方向.针对现有基于梯度的对抗样本生成方法可视质量差、基于优化的方法生成效率低的问题,提出基于Transformer和生成对抗网络(GAN)的对抗样本生成算法Trans-GAN.首先利用Transformer强大的视觉表征能力,将其作为重构网络,用于接收干净图像并生成攻击噪声;其次将Transformer重构网络作为生成器,与基于深度卷积网络的鉴别器相结合组成GAN网络架构,提高生成图像的真实性并保证训练的稳定性,同时提出改进的注意力机制Targeted Self-Attention,在训练网络时引入目标标签作为先验知识,指导网络模型学习生成具有特定攻击目标的对抗扰动;最后利用跳转连接将对抗噪声施加在干净样本上,形成对抗样本,攻击目标分类网络.实验结果表明:Trans-GAN算法针对MNIST数据集中2种模型的攻击成功率都达到99.9%以上,针对CIFAR10数据集中2种模型的攻击成功率分别达到96.36%和98.47%,优于目前先进的基于生成式的对抗样本生成方法;相比快速梯度符号法和投影梯度下降法,Trans-GAN算法生成的对抗噪声扰动量更小,形成的对抗样本更加自然,满足人类视觉不易分辨的要求.

Adversarial attack and defense is a popular research area in computer security.Trans-GAN,an adversarial example generation algorithm based on the combination of Transformer and Generate Adversarial Network(GAN),is proposed to address the problems of the poor visual quality of existing gradient-based adversarial example generation methods and the low generation efficiency of optimization-based methods.First,the algorithm utilizes the powerful visual representation capability of the Transformer as a reconstruction network for receiving clean images and generating adversarial noise.Second,the Transformer reconstruction network is combined with a deep convolutional network-based discriminator as a generator to form a GAN architecture,which improves the authenticity of the generated images and ensures the stability of training.Meanwhile,the improved attention mechanism,Targeted Self-Attention,is proposed to introduce target labels as a priori knowledge when training the network,which guides the network model to learn to generate adversarial perturbations with specific attack targets.Finally,adversarial noise is added to the clean examples using skip-connections to form adversarial examples.Experimental results demonstrate that the proposed algorithm achieves an attack success rate of more than 99.9% on both models used for the MNIST dataset and 96.36% and 98.47% on the two models used for the CIFAR10 dataset,outperforming the current state-of-the-art generative-based adversarial attack methods.The qualitative results show that compared to the Fast Gradient Sign Method(FGSM)and Projected Gradient Descent(PGD)algorithms,the generated adversarial noise of the Trans-GAN algorithm is less perturbed,and the formed adversarial examples are more natural and meet the requirements of human vision,which is not easily distinguished.

刘帅威;李智;王国美;张丽

贵州大学计算机科学与技术学院公共大数据国家重点实验室,贵州 贵阳 550025

计算机与自动化

深度神经网络对抗样本对抗攻击Transformer模型生成对抗网络注意力机制

deep neural networkadversarial exampleadversarial attackTransformer modelGenerate Adversarial Network(GAN)attention mechanism

《计算机工程》 2024 (002)

扩散磁共振张量成像的医学图像鲁棒水印算法研究

180-187 / 8

国家自然科学基金(62062023).

10.19678/j.issn.1000-3428.0067077

评论