| 注册
首页|期刊导航|计算机工程|融合改进自编码器和残差网络的入侵检测模型

融合改进自编码器和残差网络的入侵检测模型

陈虹 王瀚文 金海波

计算机工程2024,Vol.50Issue(2):188-195,8.
计算机工程2024,Vol.50Issue(2):188-195,8.DOI:10.19678/j.issn.1000-3428.0066984

融合改进自编码器和残差网络的入侵检测模型

Intrusion Detection Model Combining Improved Self-Encoder and Residual Network

陈虹 1王瀚文 1金海波1

作者信息

  • 1. 辽宁工程技术大学软件学院,辽宁 葫芦岛 125000
  • 折叠

摘要

Abstract

The vast quantities of private data on the Internet necessitate robust network intrusion prevention to safeguard network security.This study introduces an Improve Stacked AutoEncoder-ResNet(ISAE-ResNet),combining an improved self-encoder and residual network(ISAE-ResNet),to augment network intrusion detection accuracy and address the challenge of slow convergence.The model integrates an improved stack self-encoder with the Residual Network(ResNet).Initially,preprocessed data are fed into the enhanced stack self-encoder,consisting of two sub-encoders and a main encoder.By training these components,data is reconstructed with novel features to mitigate fitting issues.The advanced stack self-encoder synchronizes the weights of the decoding and encoding layers,thereby reducing model parameters by half,diminishing dimensionality,and accelerating convergence.Subsequently,the processed data is introduced into the refined ResNet,incorporating a residual module equipped with a soft threshold function to enhance accuracy by diminishing data noise.The model's efficacy and feasibility are evaluated using the CIC Intrusion Detection Systems-2017 dataset(CIC-IDS-2017).Results demonstrated a 98.67%accuracy rate,a 95.93%true case rate,a mere 0.37%false alarm rate,and rapid convergence of the loss function value to 0.042.These metrics surpass existing models in terms of accuracy,true case rate,false alarm rate,and convergence speed,thereby affirming the high validity and feasibility of the proposed intrusion detection model.

关键词

网络入侵检测/深度学习/栈式自编码器/残差网络/CIC-IDS-2017数据集

Key words

network intrusion detection/deep learning/stack self-encoder/residual network/CIC-IDS-2017 dataset

分类

信息技术与安全科学

引用本文复制引用

陈虹,王瀚文,金海波..融合改进自编码器和残差网络的入侵检测模型[J].计算机工程,2024,50(2):188-195,8.

基金项目

国家自然科学基金(62173171). (62173171)

计算机工程

OA北大核心CSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文