| 注册
首页|期刊导航|计算机工程|基于GPU的LBM迁移模块算法优化

基于GPU的LBM迁移模块算法优化

黄斌 柳安军 潘景山 田敏 张煜 朱光慧

计算机工程2024,Vol.50Issue(2):232-238,7.
计算机工程2024,Vol.50Issue(2):232-238,7.DOI:10.19678/j.issn.1000-3428.0067084

基于GPU的LBM迁移模块算法优化

GPU-based Algorithm Optimization for Streaming Module of Lattice Boltzmann Method

黄斌 1柳安军 2潘景山 1田敏 1张煜 3朱光慧1

作者信息

  • 1. 齐鲁工业大学(山东省科学院)山东省计算中心(国家超级计算济南中心),山东 济南 251013
  • 2. 济南超级计算技术研究院高性能计算实验室,山东 济南 251013
  • 3. 哈尔滨工业大学能源科学与工程学院,黑龙江 哈尔滨 150001
  • 折叠

摘要

Abstract

The Lattice Boltzmann Method(LBM)is a Computational Fluid Dynamics(CFD)method based on a mesoscopic simulation scale.A large number of discrete lattice points suitable for parallelism are set during the calculation.Several arithmetic logic units in a Graphics Processing Unit(GPU)are suitable for large-scale parallel computing.The design of a GPU-based LBM parallel algorithm can improve the computational efficiency of the algorithm.However,the calculation of each lattice point in the streaming module of the LBM algorithm requires communication with other lattice points that have strong data dependence.In this study,a GPU-based optimization strategy for an LBM streaming module is proposed.First,the implementation logic of the migration part is analyzed in detail,and a three-dimensional model is discretized into several two-dimensional models according to the velocity component through model dimension reduction,which reduces the complexity of the model.Second,the data differences in the lattice points before and after the streaming module calculation are analyzed,the communication rules of the streaming module are determined through data positioning,and the data exchange modes between the lattice points are classified.The discrete two-dimensional model is thereafter divided into regions using a classified exchange mode,and a new data communication mode is designed.Finally,the influence of data dependence is successfully eliminated and the streaming module is completely parallel.The parallel algorithm is tested,and an acceleration ratio of 1.92 times is achieved under 1.3×108 grids,which shows that the algorithm has a good parallel effect.Meanwhile,compared with an algorithm that does not parallelize the streaming module,the optimization strategy in this study can improve the parallel computing efficiency of the algorithm by 30%.

关键词

高性能计算/格子玻尔兹曼方法/图形处理器/并行优化/数据重排

Key words

High Performance Computing(HPC)/Lattice Boltzmann Method(LBM)/Graphics Processing Unit(GPU)/parallel optimization/data rearrangement

分类

计算机与自动化

引用本文复制引用

黄斌,柳安军,潘景山,田敏,张煜,朱光慧..基于GPU的LBM迁移模块算法优化[J].计算机工程,2024,50(2):232-238,7.

基金项目

国家自然科学基金(62002186) (62002186)

山东省重点研发计划项目(2021RZB01002). (2021RZB01002)

计算机工程

OA北大核心CSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文