| 注册
首页|期刊导航|计算机工程与应用|混合策略改进的金豺优化算法

混合策略改进的金豺优化算法

朱兴淋 汪廷华 赖志勇

计算机工程与应用2024,Vol.60Issue(4):99-112,14.
计算机工程与应用2024,Vol.60Issue(4):99-112,14.DOI:10.3778/j.issn.1002-8331.2306-0099

混合策略改进的金豺优化算法

Hybrid-Strategy Improved Golden Jackal Optimization

朱兴淋 1汪廷华 1赖志勇1

作者信息

  • 1. 赣南师范大学 数学与计算机科学学院,江西 赣州 341000
  • 折叠

摘要

Abstract

In view of the shortcomings of the golden jackal optimization(GJO)in solving complex optimization prob-lems,such as slow convergence speed and being easy to fall into local optimum,a hybrid-strategy improved golden jackal optimization(IGJO)is proposed.Firstly,when the optimal solution of the algorithm stagnates updating,the Cauchy varia-tion strategy is introduced to enhance the population diversity and improve the global search capability of the algorithm to avoid falling into local optimum.Then,a decision strategy based on weight is proposed to accelerate the convergence of the algorithm by assigning different weights to golden jackal individuals.Experiments with eight benchmark functions and some CEC2017 test functions show that the improved algorithm has better optimization performance and conver-gence speed.Furthermore,the improved algorithm is applied to optimize the parameters of support vector regression(SVR)model,and its effectiveness is verified by experiments on 5 UCI(University of California,Irvine)datasets.

关键词

金豺优化算法/优化问题/柯西变异/权重

Key words

golden jackal optimization/optimization problem/Cauchy variation/weight

分类

信息技术与安全科学

引用本文复制引用

朱兴淋,汪廷华,赖志勇..混合策略改进的金豺优化算法[J].计算机工程与应用,2024,60(4):99-112,14.

基金项目

国家自然科学基金(61966002) (61966002)

江西省学位与研究生教育教学改革研究项目(JXYJG-2022-172). (JXYJG-2022-172)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量7
|
下载量0
段落导航相关论文