| 注册
首页|期刊导航|计算机工程与应用|基于对比学习的矢量化特征空间嵌入聚类

基于对比学习的矢量化特征空间嵌入聚类

郑洋 吴永明 徐岸

计算机工程与应用2024,Vol.60Issue(4):211-219,9.
计算机工程与应用2024,Vol.60Issue(4):211-219,9.DOI:10.3778/j.issn.1002-8331.2209-0338

基于对比学习的矢量化特征空间嵌入聚类

Vectorized Feature Space Embedded Clustering Based on Contrastive Learning

郑洋 1吴永明 2徐岸1

作者信息

  • 1. 贵州大学 省部共建公共大数据国家重点实验室,贵阳 550025
  • 2. 贵州大学 省部共建公共大数据国家重点实验室,贵阳 550025||贵州大学 现代制造教育部重点实验室,贵阳 550025
  • 折叠

摘要

Abstract

The deep embedding clustering(DEC)algorithm only embeds data into a low-dimensional vectorized feature space by autoencoder with a single instance reconstruction for clustering,and ignores the relationship between different in-stances,which leads to the instances in the embedding space may not be well distinguished from each other.To address the above problems,vectorized feature space embedded clustering based on contrastive learning(VECCL)method is pro-posed.By contrastive learning to identify the dissimilarity between data instances in a way,features with homogeneous near and different far clustering semantics are extracted from the data and brought into DEC as prior knowledge to guide the autoencoder to initialize a low-dimensional clustering feature space with deep data information.At the same time,the entropy loss constructed by the soft classification label and the reconstruction loss of the autoencoder are introduced into the clustering loss function as a regularization term to jointly refine the clustering.Compared with the experimental re-sults of DEC method on datasets CIFAR10,CIFAR100 and STL10,ACC increaseds by 48.1,23.1 and 41.8 percentage points,NMI increaseds by 41.0,25.2 and 39.0 percentage points,and ARI increaseds by 45.4,16.4 and 41.8 percentage points,respectively.

关键词

深度聚类/对比学习/自编码器/矢量化特征空间/嵌入聚类

Key words

deep clustering/contrastive learning/autoencoder/vectorized feature space/embedding clustering

分类

信息技术与安全科学

引用本文复制引用

郑洋,吴永明,徐岸..基于对比学习的矢量化特征空间嵌入聚类[J].计算机工程与应用,2024,60(4):211-219,9.

基金项目

国家自然科学基金(51505094) (51505094)

贵州省科学技术基金计划项目(ZK[2023]一般079). (ZK[2023]一般079)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文