| 注册
首页|期刊导航|计算机工程与应用|改进YOLOv5混合样本训练的绝缘子伞盘脱落缺陷检测方法

改进YOLOv5混合样本训练的绝缘子伞盘脱落缺陷检测方法

李洵 甘润东 钱俊凤 张世恒 赵文彬 王道累

计算机工程与应用2024,Vol.60Issue(4):289-297,9.
计算机工程与应用2024,Vol.60Issue(4):289-297,9.DOI:10.3778/j.issn.1002-8331.2302-0165

改进YOLOv5混合样本训练的绝缘子伞盘脱落缺陷检测方法

Improved YOLOv5 Mixed Sample Training for Detection of Insulator Umbrella Plate Falling Defects

李洵 1甘润东 1钱俊凤 1张世恒 2赵文彬 2王道累2

作者信息

  • 1. 贵州电网有限责任公司 信息中心,贵阳 550003
  • 2. 上海电力大学 能源与机械工程学院,上海 200240
  • 折叠

摘要

Abstract

In order to realize the accurate location and identification of insulator string and umbrella plate falling defects during transmission line inspection,this paper proposes an insulator defect detection model based on improved YOLOv5 mixed sample training.Firstly,aiming at the scarcity of insulator defect images,a hybrid sample data generation method is proposed,which combines GrabCut algorithm with image fusion technology to expand the data set.Then,according to the shape characteristics of insulators and defects,the long edge definition method and CSL(circular smooth label)are used to redefine the coordinate parameters of the model feature extraction area.By adding angle information,more accu-rate feature extraction is realized.Finally,the CSPDarkNet backbone network is optimized by fusing some feature layers in the Backbone with the features extracted by PAN(path aggregation network).The improved YOLOv5 CSPDarkNet model increases the detection accuracy of insulator defects by 2.8 percentage points compared with the improved model,and the detection rate is 20.5 FPS.The experimental results show that the improved insulator defect identification method basically meets the needs of practical application.

关键词

特征融合/YOLOv5/旋转框/伞盘脱落缺陷

Key words

feature fusion/YOLOv5/rotating frame/umbrella plate falling defect

分类

信息技术与安全科学

引用本文复制引用

李洵,甘润东,钱俊凤,张世恒,赵文彬,王道累..改进YOLOv5混合样本训练的绝缘子伞盘脱落缺陷检测方法[J].计算机工程与应用,2024,60(4):289-297,9.

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文