| 注册
首页|期刊导航|计算机工程与应用|采用融合的U-net模型连续无创动脉血压预测方法

采用融合的U-net模型连续无创动脉血压预测方法

王军昂 张立新 王赛 吴凯枫 阚希 陈乃源

计算机工程与应用2024,Vol.60Issue(4):324-330,7.
计算机工程与应用2024,Vol.60Issue(4):324-330,7.DOI:10.3778/j.issn.1002-8331.2211-0031

采用融合的U-net模型连续无创动脉血压预测方法

Predication Method of Continuous Non-Invasive Arterial Blood Pressure Using Fusion U-net Model

王军昂 1张立新 2王赛 1吴凯枫 1阚希 3陈乃源1

作者信息

  • 1. 南京信息工程大学 自动化学院,南京 210044
  • 2. 南京信息工程大学 自动化学院,南京 210044||无锡学院,江苏 无锡 214105
  • 3. 无锡学院,江苏 无锡 214105
  • 折叠

摘要

Abstract

Continuous blood pressure monitoring is helpful to the diagnosis and treatment of cardiovascular diseases.At present,machine learning and deep learning are used to predict blood pressure by manually extracting feature parameters.This method cannot reconstruct complete blood pressure signals.Therefore,a continuous non-invasive arterial blood pres-sure measurement method based on the fused U-net model is proposed.Firstly,the original photoplethysmogram(PPG)signal is used as the input to reduce the error of manually extracting feature parameters.Secondly,the U-net network is used to reconstruct the arterial blood pressure signal.In order to further improve the accuracy of the predicted blood pres-sure waveform,the reconstructed blood pressure signal is used as the input of the MultiResUnet network.The MultiRes module is used to learn different features from the data.The Res Path module alleviates the semantic differences between the encoder and the decoder,making the model learning easier.The arterial blood pressure(ABP)waveform predicted by the fused U-net network in the subject evaluation of MIMIC-Ⅲ dataset is highly correlated with the actual waveform.The calculated mean absolute errors of systolic blood pressure(SBP),diastolic blood pressure(DBP)and mean pressure(MAP)are 2.20±4.30 mmHg,1.82±3.146 mmHg and 2.25±2.86 mmHg.The method satisfies the requirements of the Association for the Advancement of Medical Instrumentation(AAMI)standard and reaches Grade A in the British High Pressure Society(BHS)standard.

关键词

动脉血压(ABP)/电容积脉搏波(PPG)/无创/U-net

Key words

arterial blood pressure(ABP)/photoplethysmogram(PPG)/non-invasive/U-net

分类

信息技术与安全科学

引用本文复制引用

王军昂,张立新,王赛,吴凯枫,阚希,陈乃源..采用融合的U-net模型连续无创动脉血压预测方法[J].计算机工程与应用,2024,60(4):324-330,7.

基金项目

国家自然科学基金青年科学基金(42105143) (42105143)

江苏省教育厅高等学校基础科学(自然科学)研究面上项目(580221016). (自然科学)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文