| 注册
首页|期刊导航|计算机应用与软件|基于三重混合采样和集成学习的潜在高价值旅客发现

基于三重混合采样和集成学习的潜在高价值旅客发现

冯霞 胡昉

计算机应用与软件2024,Vol.41Issue(1):12-17,35,7.
计算机应用与软件2024,Vol.41Issue(1):12-17,35,7.DOI:10.3969/j.issn.1000-386x.2024.01.003

基于三重混合采样和集成学习的潜在高价值旅客发现

POTENTIAL HIGH-VALUE PASSENGER DISCOVERY BASED ON SSOMAJ-SMOTE-SSOMIN SAMPLING AND ENSEMBLE LEARNING

冯霞 1胡昉2

作者信息

  • 1. 中国民航大学计算机科学与技术学院 天津 300300||中国民航信息技术科研基地 天津 300300
  • 2. 中国民航大学计算机科学与技术学院 天津 300300
  • 折叠

摘要

Abstract

Considering highly-imbalanced data and weak correlation between passenger characteristics and value categories of potential high-value passenger,a potential high-value passenger discovery model based on SSOMaj-SMOTE-SSOMin sampling and ensemble learning is proposed.The RFM method was used to label the passenger category.The SSOMaj-SMOTE-SSOMin method was used to resample the imbalanced passenger data set.The fusion feature selection algorithm(FFS)was used to select the passenger features.Gradient boosting decision tree(GBDT)was taken as the classifier to build a passenger value prediction model to identify potential high-value passengers.Compared with the baseline algorithm,the experimental results on the PNR data set show that the proposed model achieves better AUC value and F1 value,and can better identify potential high-value passengers.

关键词

航空运输/三重混合采样/特征重要性排序/潜在高价值旅客/不平衡分类/集成学习

Key words

Air transportation/SSOMaj-SMOTE-SSOMin/Feature importance ranking/Potential high value passenger/Imbalanced classification/Ensemble learning

分类

计算机与自动化

引用本文复制引用

冯霞,胡昉..基于三重混合采样和集成学习的潜在高价值旅客发现[J].计算机应用与软件,2024,41(1):12-17,35,7.

基金项目

国家自然科学基金项目(61502499) (61502499)

中国民航大学科研基金项目(2013QD18X) (2013QD18X)

民航旅客服务智能化应用技术重点实验室项目. ()

计算机应用与软件

OACSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文