| 注册
首页|期刊导航|计算机应用与软件|基于物联感知的城轨设备智能采集与监控优化

基于物联感知的城轨设备智能采集与监控优化

张铭 王石生 高凡

计算机应用与软件2024,Vol.41Issue(1):26-35,10.
计算机应用与软件2024,Vol.41Issue(1):26-35,10.DOI:10.3969/j.issn.1000-386x.2024.01.005

基于物联感知的城轨设备智能采集与监控优化

INTELLIGENT COLLECTION AND MONITORING OPTIMIZATION OF URBAN RAIL TRANSIT EQUIPMENT BASED ON INTERNET OF THINGS PERCEPTION

张铭 1王石生 1高凡1

作者信息

  • 1. 中国铁道科学研究院集团有限公司电子计算技术研究所 北京 100081
  • 折叠

摘要

Abstract

Aimed at the inefficiency and performance bottleneck of information collection and display of large-scale electromechanical equipment in urban rail transit(URT)ubiquitous in the Internet of things,a method of massive data collection and intelligent processing of perceptual devices is proposed.Through self-identification,self-adaptive and hierarchical connection of data points,batch processing of the equipment status capture was realized,and the intelligent algorithm of graphic and image recognition was used to automatically produce the equipment monitoring interface.According to the logical calculation of real-time data and semantic model transformation,the combined values of multiple groups of data were fitted to reflect the comprehensive state of associated systems and further define the monitoring strategy of classified alarm,to realize data driven intelligent monitoring.The experimental results show that data interface standardization can significantly speed up the access a great quantity of equipment,and the optimized algorithm can make the recognition rate of system drawing to 90%,also,the availability of connecting objects and display reaches more than 85%.The efficiency and accuracy of the monitoring are improved.

关键词

城市轨道交通/物联网/监测/感知/图像识别/批量化

Key words

Urban railtransit/Internet of Things/Monitor/Perception/Image recognition/Mass production

分类

信息技术与安全科学

引用本文复制引用

张铭,王石生,高凡..基于物联感知的城轨设备智能采集与监控优化[J].计算机应用与软件,2024,41(1):26-35,10.

基金项目

科技部国家重点研发计划项目(2018YFB1201404) (2018YFB1201404)

北京市自然科学基金-丰台轨道交通前沿研究联合基金项目(L221010) (L221010)

中国铁道科学研究院集团有限公司科技研究开发计划项目(2020YJ192). (2020YJ192)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文