| 注册
首页|期刊导航|计算机应用与软件|基于自适应邻域局部保留ELM-AE的机械故障诊断

基于自适应邻域局部保留ELM-AE的机械故障诊断

张焕可 王帅旗 陈会涛

计算机应用与软件2024,Vol.41Issue(1):56-63,8.
计算机应用与软件2024,Vol.41Issue(1):56-63,8.DOI:10.3969/j.issn.1000-386x.2024.01.009

基于自适应邻域局部保留ELM-AE的机械故障诊断

MECHANICAL FAULT DIAGNOSIS BASED ON ADAPTIVE NEIGHBORHOOD PRESERVING ELM-AE

张焕可 1王帅旗 1陈会涛2

作者信息

  • 1. 许昌电气职业学院机电工程系 河南许昌 461000
  • 2. 河南理工大学机械与动力工程学院 河南焦作 454003
  • 折叠

摘要

Abstract

In order to solve the problems of prior knowledge dependence and insufficient data mining in machine learning fault diagnosis,a local preserving extreme learning machine automatic encoder based on adaptive neighborhood is proposed.Euclidean distance penalty factor was introduced into the original data space and the embedded representation space for paired samples to realize the similarity classification of data samples.A unified objective function was proposed,which could simultaneously learn data representation and correlation matrix,and a soft discriminative constraint was proposed to prevent overfitting.The experimental results show that the fusion learning association matrix and data representation method has the advantages of fast learning speed,strong generalization ability and high diagnostic accuracy.

关键词

极限学习机/自动编码器/关联矩阵学习/自适应邻域/机器故障诊断

Key words

Extreme learning machine/Automatic encoder/Affinity learning matrix/Adaptive neighborhood/Machine fault diagnosis

分类

信息技术与安全科学

引用本文复制引用

张焕可,王帅旗,陈会涛..基于自适应邻域局部保留ELM-AE的机械故障诊断[J].计算机应用与软件,2024,41(1):56-63,8.

基金项目

2018年度河南省重点研发与推广专项(182102310793). (182102310793)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文