| 注册
首页|期刊导航|计算机应用与软件|基于多特征融合卷积的步态识别算法研究

基于多特征融合卷积的步态识别算法研究

杨鹏 应娜 李怡菲

计算机应用与软件2024,Vol.41Issue(1):139-145,7.
计算机应用与软件2024,Vol.41Issue(1):139-145,7.DOI:10.3969/j.issn.1000-386x.2024.01.021

基于多特征融合卷积的步态识别算法研究

GAIT RECOGNITION ALGORITHM BASED ON MULTI-FEATURE FUSION CONVOLUTION

杨鹏 1应娜 1李怡菲1

作者信息

  • 1. 杭州电子科技大学通信工程学院 浙江杭州 310018
  • 折叠

摘要

Abstract

Aimed at the weak learning and classification ability of the backbone network in the GaitSet algorithm,the gait recognition algorithm based on the multi-feature fusion convolution(MFFC-GaitSet)is proposed.The algorithm reconstructed the GaitSet network by multi-feature fusion convolution to enhance the network learning ability,and smoothed and optimized the ternary loss function.The gait contour map was repaired by morphological processing.The algorithm was validated on the Casia-B dataset and achieved a gait recognition accuracy of 85.811%,with the increase of 2.6%.The model weight was increased by only 6%.The algorithm could effectively reduce the negative influence of complex environment on gait recognition and achieve high-precision gait recognition in complex environment.The experimental results show that the method can achieve more accurate gait recognition with better robustness and generalization ability.

关键词

步态识别/多特征融合/形态学处理/三元组平滑优化/Casia-B数据集

Key words

Gait recognition/Multi-feature fusion/Morphological processing/Triplet smoothing optimization/Casia-B dataset

分类

信息技术与安全科学

引用本文复制引用

杨鹏,应娜,李怡菲..基于多特征融合卷积的步态识别算法研究[J].计算机应用与软件,2024,41(1):139-145,7.

基金项目

浙江省自然科学基金项目(LY16F010013). (LY16F010013)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文