| 注册
首页|期刊导航|计算机应用与软件|基于改进Unet网络的CT图像肺实质自动分割算法

基于改进Unet网络的CT图像肺实质自动分割算法

傅寰宇 费树岷

计算机应用与软件2024,Vol.41Issue(1):230-239,10.
计算机应用与软件2024,Vol.41Issue(1):230-239,10.DOI:10.3969/j.issn.1000-386x.2024.01.034

基于改进Unet网络的CT图像肺实质自动分割算法

AUTOMATIC SEGMENTATION ALGORITHM OF LUNG PARENCHYMA IN CT IMAGES BASED ON IMPROVED UNET NETWORK

傅寰宇 1费树岷1

作者信息

  • 1. 东南大学自动化学院 江苏南京 210096
  • 折叠

摘要

Abstract

Segmentation of lung parenchyma is an important step in computer-aided diagnosis of lung cancer.Aimed at the problems of insufficient segmentation accuracy and slow convergence speed of Unet,a lung parenchymal segmentation algorithm based on improved Unet is proposed.K-means clustering and convex hull scanning algorithm were used for pre-segmentation to complete the positioning and correction of lung parenchyma.Based on the Unet structure,the Sobel convolutional layer was introduced to strengthen the high-pass filtering of the edge area,and the random inactivation module was added to the feature fusion to further improve the segmentation accuracy.Combining traditional image processing methods with deep learning,an optimized and improved segmentation model was obtained.Experiments show that the algorithm can segment lung parenchyma accurately and efficiently,with an average Dice similarity coefficient of 0.983 4,and the convergence speed and segmentation performance are better than other new segmentation algorithms.

关键词

医学图像分割/Unet/计算机辅助诊断/深度学习

Key words

Medical image segmentation/Unet/CAD/Deep learning

分类

信息技术与安全科学

引用本文复制引用

傅寰宇,费树岷..基于改进Unet网络的CT图像肺实质自动分割算法[J].计算机应用与软件,2024,41(1):230-239,10.

基金项目

科技部重点研发项目(2020YFC2007400). (2020YFC2007400)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文