| 注册
首页|期刊导航|计算机应用与软件|基于聚类和生成对抗学习模型的滤波器剪枝

基于聚类和生成对抗学习模型的滤波器剪枝

冯叶棋 张俊三 邵明文 张世栋

计算机应用与软件2024,Vol.41Issue(1):253-260,8.
计算机应用与软件2024,Vol.41Issue(1):253-260,8.DOI:10.3969/j.issn.1000-386x.2024.01.037

基于聚类和生成对抗学习模型的滤波器剪枝

FPCC-GAN:CLUSTER CENTER AND GENERATIVE ADVERSARIAL LEARNING IN FILTER LEVEL PRUNING

冯叶棋 1张俊三 1邵明文 1张世栋2

作者信息

  • 1. 中国石油大学(华东)计算机科学与技术学院 山东青岛 266580
  • 2. 国网山东电科院 山东济南 250003
  • 折叠

摘要

Abstract

The deep architecture and parameter redundancy of deep neural network will lead to high computational cost.Deep neural network compression and acceleration has become an important issue in recent years.To address the norm-criterion limitation and label dependence of current methods,we propose a structured filter pruning method based on cluster center and generative adversarial learning(FPCC-GAN).(1)The filters were clustered by K-means clustering algorithm for every convolution layer.(2)Filters closer to the cluster center were pruned proportionally,which extracted redundant features.(3)Generative adversarial learning was used for iteratively training.The experimental results show that compared with current mainstream methods,the proposed method has higher accuracy.

关键词

网络压缩/深度神经网络加速/参数剪枝/聚类/生成对抗学习

Key words

Network compression/Network acceleration/Parameter pruning/Clustering/Generative adversarial learning

分类

信息技术与安全科学

引用本文复制引用

冯叶棋,张俊三,邵明文,张世栋..基于聚类和生成对抗学习模型的滤波器剪枝[J].计算机应用与软件,2024,41(1):253-260,8.

基金项目

国家自然科学基金项目(61673396) (61673396)

中央高校基本科研业务费专项资金项目(20CX05019A) (20CX05019A)

中石油重大科技项目(ZD2019-183-004). (ZD2019-183-004)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文