|国家科技期刊平台
首页|期刊导航|南方电网技术|基于强化学习的电-气-热多微网系统定价策略

基于强化学习的电-气-热多微网系统定价策略OA北大核心CSTPCD

Pricing Strategy for Electric-Gas-Heat Multi-Microgrid System Based on Re-Inforcement Learning

中文摘要英文摘要

随着能源交易的逐步市场化,含电-气-热的多微网系统中微网服务商的零售价定价策略将影响到系统的运行和所有参与者的利益.为研究微网服务商的定价策略,首先详细描述了电-气-热多微网系统内部交易过程并建立了系统模型.随后这一定价问题被描述为斯塔克尔伯格博弈,并证明了该博弈存在唯一的均衡解.为保护各主体隐私,提出了一种基于强化学习的求解方法以求解存在时间耦合的斯塔克尔伯格博弈.算例研究表明,该方法准确有效地解决了所提出的定价策略问题,微网服务商和各微网均采取了有效策略以保证自身利益.同时,该方法有效保护了市场参与者的隐私并展现了良好的计算性能.

With the gradual marketization of energy trading,the retail price pricing strategy of microgrid service provider in a multi-microgrid system including electric-gas-heat will affect the operation of the system and the interests of all participants.In order to study the pricing strategy of microgrid service providers,this paper firstly describes the internal transaction process of the electric-gas-heat multi-microgrid system and establishes the system model.This pricing problem is then described as a Stackelberg game,and it shows that there is a unique equilibrium point for this game.In order to protect the privacy of each subject,this paper proposes a solu-tion method based on reinforcement learning to solve the Stackelberg game with time coupling.The case study shows that this method can accurately and effectively solve the proposed pricing strategy problem,and the microgrid service providers and all the microgrids have adopted effective strategies to ensure their own interests.At the same time,the method effectively protects the privacy of market participants and exhibits good computing performance.

李媛;迟昆;王洲;彭婧;贾春蓉;刘炳文

国网甘肃省电力公司经济技术研究院,兰州 730050西安交通大学电气工程学院,西安 710054

动力与电气工程

多微网系统定价策略斯塔克尔伯格博弈强化学习

multi-microgrid systempricing strategyStackelberg gamereinforcement learning

《南方电网技术》 2024 (001)

94-101 / 8

国家自然科学基金资助项目(52177112). Supported by the National Natural Science Foundation of China(52177112).

10.13648/j.cnki.issn1674-0629.2024.01.010

评论