首页|期刊导航|石油物探|基于MultiRes-Unet神经网络的三维断层识别研究

基于MultiRes-Unet神经网络的三维断层识别研究OA北大核心CSTPCD

3D fault identification based on MultiRes-Unet neural network

中文摘要英文摘要

三维地震数据中的断层规模从米级到千米级不等,断距从米级到数十米级不等.断层通常表现为同相轴错断、突然增减、消失或扭曲等显著地震响应特征.断层在三维地震数据体中占的体积比例很小,使得利用常规断层识别方法得到的断层识别结果存在不连续、识别率低等问题.针对断层的多分辨率特征,充分考虑了断层点或线在整个地震数据的占比小等特点,提出了一种三维神经网络MultiRes-Unet3D断层识别方法,该方法在网络学习过程中使用加权交叉熵损失函数解决了普通交叉熵损失…查看全部>>

Faults,which extend for dozens of meters to dozens of kilometers with fault throw changing from a few meters to tens of meters,may exhibit quite different seismic responses,e.g.discontinuous reflections,suddenly increasing or decreasing events,and blank or distorted reflections.Fault responses merely account for a tiny percentage of total seismic responses;this means that fault predictions may be quite snatchy and somewhat inaccurate.A 3D neural network,Mult…查看全部>>

李泽伟;朱培民;张昊;廖志颖;李广超;郑浩然

中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074||东方地球物理勘探有限责任公司研究院,河北涿州 072750中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074黄河勘测规划设计研究院有限公司,河南郑州 450003东方地球物理勘探有限责任公司研究院,河北涿州 072750

地质学

地震资料解释断层识别深度学习TensorflowMultiRes-Unet3D

seismic interpretationfault identificationdeep learningTensorflowMultiRes-Unet3D

《石油物探》 2024 (1)

基于槽波理论的煤巷超前探测成像方法研究

91-103,13

国家自然科学基金项目(41774145,42074074)资助.This research is financially supported by the National Natural Science Foundation of China(Grant Nos.41774145,42074074).

10.12431/issn.1000-1441.2024.63.01.008

评论

您当前未登录!去登录点击加载更多...