| 注册
首页|期刊导航|石油物探|基于MultiRes-Unet神经网络的三维断层识别研究

基于MultiRes-Unet神经网络的三维断层识别研究

李泽伟 朱培民 张昊 廖志颖 李广超 郑浩然

石油物探2024,Vol.63Issue(1):91-103,13.
石油物探2024,Vol.63Issue(1):91-103,13.DOI:10.12431/issn.1000-1441.2024.63.01.008

基于MultiRes-Unet神经网络的三维断层识别研究

3D fault identification based on MultiRes-Unet neural network

李泽伟 1朱培民 2张昊 2廖志颖 2李广超 3郑浩然4

作者信息

  • 1. 中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074||东方地球物理勘探有限责任公司研究院,河北涿州 072750
  • 2. 中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074
  • 3. 黄河勘测规划设计研究院有限公司,河南郑州 450003
  • 4. 东方地球物理勘探有限责任公司研究院,河北涿州 072750
  • 折叠

摘要

Abstract

Faults,which extend for dozens of meters to dozens of kilometers with fault throw changing from a few meters to tens of meters,may exhibit quite different seismic responses,e.g.discontinuous reflections,suddenly increasing or decreasing events,and blank or distorted reflections.Fault responses merely account for a tiny percentage of total seismic responses;this means that fault predictions may be quite snatchy and somewhat inaccurate.A 3D neural network,MultiRes-Unet3D,is a plausible solution to multi-resolution fault characterization.In view of the small proportion of fault responses,a weighted cross-entropy loss function is used in the learning process to balance among different terms and improve the credibility of fault detection.3D synthetic seismic data sets and fault labels are generated through forward modeling.The MultiRes-Unet3D is built,trained,and validated based on Tensor-flow,and then the network model trained is applied to 3D seismic data for fault identification.The results show good spatial conti-nuity of fault identification and credible fault boundary detection.The MultiRes-Unet3D has good generalization performance and could be applied to seismic data with different fault features.This technique can save the cost in time and labor of fault interpreta-tion and yield objective results.

关键词

地震资料解释/断层识别/深度学习/Tensorflow/MultiRes-Unet3D

Key words

seismic interpretation/fault identification/deep learning/Tensorflow/MultiRes-Unet3D

分类

天文与地球科学

引用本文复制引用

李泽伟,朱培民,张昊,廖志颖,李广超,郑浩然..基于MultiRes-Unet神经网络的三维断层识别研究[J].石油物探,2024,63(1):91-103,13.

基金项目

国家自然科学基金项目(41774145,42074074)资助.This research is financially supported by the National Natural Science Foundation of China(Grant Nos.41774145,42074074). (41774145,42074074)

石油物探

OA北大核心CSTPCD

1000-1441

访问量0
|
下载量0
段落导航相关论文