| 注册
首页|期刊导航|石油物探|生成式对抗神经网络的改进及其在地震数据压噪中的应用

生成式对抗神经网络的改进及其在地震数据压噪中的应用

彭海龙 李明 孙文钊 李列 周凡 鲁统祥 江凡

石油物探2024,Vol.63Issue(1):104-115,128,13.
石油物探2024,Vol.63Issue(1):104-115,128,13.DOI:10.12431/issn.1000-1441.2024.63.01.009

生成式对抗神经网络的改进及其在地震数据压噪中的应用

Seismic data denoising based on improved generative adversarial network

彭海龙 1李明 1孙文钊 1李列 1周凡 1鲁统祥 1江凡1

作者信息

  • 1. 中海石油(中国)有限公司湛江分公司,广东湛江 524057
  • 折叠

摘要

Abstract

Random noises in seismic data will deteriorate data quality and have a negative impact on interpretation.In random noise reduction,it is difficult to restore effective information in seismic data using a conventional generative adversarial network.Based on the U-net network,we develop a modified generative adversarial network with optimized batch normalization and pooling layers to improve effective information restoration.A multi-scale discriminator network is established to improve the performance of the network model.A set of multi-module loss functions are formulated with feature matching loss and structural information loss.Ow-ing to the new network structure,it is unnecessary to estimate noises in advance,and thus end-to-end blind denoising could be a-chieved.The model also features improved ability of generalization and data restoration.Field data tests in the northern South China Sea show improved performance of noise reduction and signal preservation compared with other denoising algorithms,leading to better imaging of boundaries.The improved generative adversarial network is a good method for seismic data denoising and could be applied to seismic data processing in additional prospects.

关键词

生成式对抗神经网络/U-net神经网络/地震数据去噪/泛化能力/数据细节

Key words

generative adversarial network/U-net network/seismic data denoising/generalization ability/data detail

分类

地质学

引用本文复制引用

彭海龙,李明,孙文钊,李列,周凡,鲁统祥,江凡..生成式对抗神经网络的改进及其在地震数据压噪中的应用[J].石油物探,2024,63(1):104-115,128,13.

基金项目

中海油"十四五"重大专项课题(KJGG2022-0302)资助.This research is financially supported by the Major Project of CNOOC during 14th Five Year Plan Period(Grant No.KJGG2022-0302). (KJGG2022-0302)

石油物探

OA北大核心CSTPCD

1000-1441

访问量0
|
下载量0
段落导航相关论文