| 注册
首页|期刊导航|石油物探|基于深度残差网络的走滑断层智能识别方法

基于深度残差网络的走滑断层智能识别方法

孙冲 毕建军 雷刚林 张银涛 康鹏飞 谢舟 郑明君 曹佳佳 赵海山 陈彦虎

石油物探2024,Vol.63Issue(1):129-137,9.
石油物探2024,Vol.63Issue(1):129-137,9.DOI:10.12431/issn.1000-1441.2024.63.01.011

基于深度残差网络的走滑断层智能识别方法

Intelligent identification of strike-slip faults based on deep residual network:A case study in Fuman Oilfield,Tarim Basin

孙冲 1毕建军 2雷刚林 1张银涛 1康鹏飞 1谢舟 1郑明君 1曹佳佳 2赵海山 2陈彦虎2

作者信息

  • 1. 中国石油塔里木油田公司,新疆库尔勒 841000
  • 2. 北京中恒利华石油技术研究所,北京 100102
  • 折叠

摘要

Abstract

Strike-slip fault identification is important to the exploration and development of fault-controlled fractured-vuggy car-bonate reservoirs,but the horizontal displacement of a strike-slip fault is ambiguous on seismic sections perpendicular to fault strike.Manual fault interpretation with heavy workload is greatly dependent on the experience of the interpreter.We propose an in-telligent method for strike-slip fault identification based on the deep residual network.The residual network is composed of three sub-networks for feature extraction,structure extraction,and denoising convolution,respectively.The sub-network of feature ex-traction is used to extract residual mapping features of seismic and fault prediction.The sub-network of denoising convolution is used to remove accumulated noises generated by the network.The sub-network of structure extraction is used to extract the residu-al mapping of boundary structure for fault interpretation.Multi-layer output fusion and transfer learning are adopted to avoid high-frequency loss in network-based prediction and enhance the robustness and generalization of fault classification and interpretation of different scales.Model tests using synthetic records show high accuracy,small missing rate,good continuity,distinct boundaries,and good anti-noise performance of identifying the faults with small displacement and strike slip on seismic sections with low sig-nal-to-noise ratio.The field data application to fault-controlled fractured-vuggy carbonate reservoirs in Fuman Oilfield,the Tarim Basin shows good results of identifying linear strike-slip faults,compressional torsional braided strike-slip faults,and extensional braided strike-slip faults.

关键词

断控缝洞体/碳酸盐岩油气藏/残差网络/深度学习/走滑断层/智能识别

Key words

fault-controlled fractured-vuggy reservoir/carbonate reservoir/residual network/deep learning/strike-slip fault/intelli-gent identification

分类

天文与地球科学

引用本文复制引用

孙冲,毕建军,雷刚林,张银涛,康鹏飞,谢舟,郑明君,曹佳佳,赵海山,陈彦虎..基于深度残差网络的走滑断层智能识别方法[J].石油物探,2024,63(1):129-137,9.

基金项目

中国石油天然气股份有限公司科学研究与技术开发项目(2021DJ1501)资助.This research is financially supported by the Scientific Research and Technology Development Project of CNPC(Grant No.2021DJ1501). (2021DJ1501)

石油物探

OA北大核心CSTPCD

1000-1441

访问量0
|
下载量0
段落导航相关论文