基于改进蚁群算法的自动落布车路径规划OACSTPCD
Automatic fabric drop trolley path planning based on improved ant colony algorithm
针对自动落布车在使用蚁群算法(ant colony algorithm,ACA)进行路径规划过程中出现的收敛次数多、收敛速度较慢且容易陷入局部最优的问题,提出一种改进蚁群算法(improved ant colony algorithm,IACA).首先对信息素挥发系数ρ进行自适应调整,令其做动态变化,克服算法的收敛次数过多,加快算法收敛速度,减少算法的收敛时间;其次引入细菌觅食算法中趋化操作的趋化步长因子对信息素更新公式进行改进,削减算法迭代的后期信息素浓度值,使算法在后期跳出局部最优值,提高算法全局搜索能力.利用 MATLAB将改进后的算法在3种不同的栅格环境中进行仿真验证.结果表明:相比传统蚁群算法,改进后的算法收敛次数减少81.1%,最小路径长度减少6.3%,收敛时间减少20.7%.最后搭建ROS小车实验平台,利用ROS机器人系统对改进蚁群算法在模拟的织布车间环境中进行实验验证.结果表明:对比传统蚁群算法,改进蚁群算法在寻优时间上减少了8.6%.
Aimed at the problems of high convergence times,slow convergence speed and easy to fall into the local optimum in the path planning process of the automatic fabric drop trolley using ant colony algorithm(ACA),an improved ant colony algorithm(IACA)was proposed.Firstly,the pheromone volatilization coefficients ρ were adaptively adjusted to make dynamic changes to o-vercome the excessive number of convergence of the algorithm,to speed up the convergence of the algorithm and to reduce the convergence time of the algorithm.Secondly,the pheromone up-dating formula was improved by introducing the chemotaxis step factor of the chemotaxis opera-tion in the bacterial foraging algorithm,which cuts down the pheromone concentration value at the late stage of the algorithm iteration.This makes the algorithm jump out of the local optimum at the late stage,improving the algorithm's global searching ability.The improved algorithm was validated by simulation in three different grid environments using MATLAB.The simulation re-sults show that compared to the traditional ant colony algorithm,the improved algorithm reduces the number of convergences by 81.1%,the minimum path length by 6.3%,and the convergence time by 20.7%.Finally,the ROS trolley experimental platform was built,and the improved ACO algorithm was experimentally verified in a simulated weaving workshop environment using the ROS robot system.The results show that the improved one reduces the optimization time by 8.6%compared with the traditional ant colony algorithm.
沈丹峰;王博;李许锋;白鹏飞
西安工程大学 机电工程学院,陕西 西安 710048西安工程大学 机电工程学院,陕西 西安 710048西安工程大学 机电工程学院,陕西 西安 710048西安工程大学 机电工程学院,陕西 西安 710048
轻工业
自动落布车蚁群算法信息素挥发系数自适应调整细菌觅食算法趋化操作
automatic fabric drop trolleyant colony algorithmpheromone volatility factora-daptive adjustmentbacterial foraging algorithmchemotactic operation
《西安工程大学学报》 2024 (1)
齿轮系统监控一体参数空间解域界及混沌振动控制方法研究
50-59,10
国家自然科学基金(51805402)
评论