| 注册
首页|期刊导航|中国防汛抗旱|基于深度学习和水动力模型的洪水演进快速模拟方法

基于深度学习和水动力模型的洪水演进快速模拟方法

廖耀星 高玮志 张轩 赖成光 王兆礼

中国防汛抗旱2024,Vol.34Issue(2):16-22,7.
中国防汛抗旱2024,Vol.34Issue(2):16-22,7.DOI:10.16867/j.issn.1673-9264.2024022

基于深度学习和水动力模型的洪水演进快速模拟方法

Rapid simulation of flood routing using deep learning and hydrodynamic model

廖耀星 1高玮志 1张轩 2赖成光 1王兆礼1

作者信息

  • 1. 华南理工大学土木与交通学院,广州 510641||人工智能与数字经济广东省实验室(广州),广州 510330
  • 2. 南京水利科学研究院水文水资源与水利工程科学国家重点实验室,南京 210029
  • 折叠

摘要

Abstract

The rapid simulation and early warning of flood disasters are crucial for flood prevention and mitigation.However,the current simulation efficiency of urban flood models based on physical mechanisms remains low.In this study,a deep learning model based on convolutional neural network(CNN)is constructed by combining flood inundation data generated by hydrodynamic model and deep learning techniques to rapidly simulate urban flood routing.The results show that the developed CNN model can effectively simulate the flood inundation,with a peak water depth prediction error within 8%,and a good performance in simulating the inundation extent.The CNN model demonstrates a significantly higher efficiency in flood inundation simulation,achieving approximately 400 times faster computation while maintaining comparable accuracy to hydrodynamic models.This study can provide valuable insights for rapid simulation of urban flood inundation,early warning and forecasting of flood disasters,and the development of digital twin basins.

关键词

洪水淹没/水动力模型/深度学习/快速模拟

Key words

flood routing/hydrodynamic model/deep learning/rapid simulation

分类

信息技术与安全科学

引用本文复制引用

廖耀星,高玮志,张轩,赖成光,王兆礼..基于深度学习和水动力模型的洪水演进快速模拟方法[J].中国防汛抗旱,2024,34(2):16-22,7.

基金项目

国家自然科学基金项目(52379010)和广东省基础与应用基础研究基金项目(2023B1515020087、2022A1515010019). (52379010)

中国防汛抗旱

1673-9264

访问量0
|
下载量0
段落导航相关论文