基于精确Zoeppritz方程的贝叶斯叠前地震随机反演OACSTPCD
基于精确Zoeppritz方程的叠前地震反演方法在面向低信噪比地震资料的应用时仍然存在较大挑战。马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC)模拟是一种启发式的全局寻优算法,是实现叠前弹性参数非线性反演的有效途径。常规基于MCMC算法的叠前反演采用高斯分布来刻画弹性参数的统计特征,在应用于复杂岩性储层时有较大的局限性。同时,由于地下模型参数空间巨大以及地震数据中噪声等因素的影响,MCMC对弹性参数后验概率分布的搜索过程极易受到局部极值的影响,这使得基于MCMC的叠前反演较难获得稳定、准确的结果。本文针对实际复杂储层及低信噪比地震资料条件下基于精确Zoeppritz方程的叠前反演问题,提出了一种改进的MCMC弹性参数反演方法。该方法首先利用低频模型约束,将待反演参数转换为模型参数的扰动量,从而降低后验概率分布的复杂度;其次,通过对似然函数取对数,并利用低频模型来约束地震正演过程;最后,利用基于随机子空间采样的多链算法对叠前非线性反演问题进行全局寻优,以避免采样过程过早地收敛到局部极值。低信噪比模拟数据和实际数据的测试表明,本文所提方法能够获得更加准确、稳定的弹性参数反演结果,并且能够对反演结果给出可信、定量的不确定性估计。
牛丽萍;胡华锋;周单;郑晓东;耿建华;
中石化石油物探技术研究院有限公司,江苏南京211103中国石油勘探开发研究院,北京100083同济大学海洋地质国家重点实验室,上海200092 同济大学海洋与地球科学学院,上海200092 同济大学海洋资源研究中心,上海200092
地质学
Zoeppritz方程贝叶斯理论叠前反演MCMC不确定性
《物探与化探》 2024 (001)
P.77-87 / 11
中国科学院战略性先导科技专项(A类)“深层油气储层地球物理分布预测”(XDA14010203);国家自然科学基金企业创新发展联合基金“海相深层油气富集机理与关键工程技术基础研究”(U19B6003)。
评论