半挂汽车列车挂车转向PSO-LQR控制器设计OACSTPCD
Design of PSO-LQR controller for trailer steering of tractor semitrailers
针对低速转向时挂车跟踪牵引车轨迹性能较差的问题,设计了一种基于粒子群优化(particle swarm optimization,PSO)的挂车主动转向LQR控制器,探讨了不同权重矩阵获取方式对挂车转向控制效果的影响.验证了构建的挂车转向半挂汽车列车运动学模型的可靠性;设计了挂车的低速轨迹跟踪LQR控制器,利用PSO算法优化了 LQR控制器的权重矩阵;研究了不同权重矩阵获取方式下的控制器性能.研究结果表明:经PSO算法优化后的LQR控制器能使挂车更快地进入稳定跟踪状态;当权重矩阵R分别取作0.1和1时,相比于由人为整定得到的权重矩阵Q对应的挂车跟踪误差,全局最优权重矩阵对应的挂车跟踪误差在单U形路径下分别减小26.1%和19.4%,在匝道螺旋路径下分别减小了 40.9%和43.4%.
To address the poor tracking performance of semitrailers when tractors steering at low speeds,an active steering Linear Quadratic Regulator(LQR)based on Particle Swarm Optimization(PSO)is designed,and the impact of different weight matrix acquisition methods on the steering control effect of trailers is explored.First,the reliability of the kinematics model of the tractor-semitrailer with the trailer steering system is verified.Second,an LQR for low-speed trajectory tracking of the trailer is designed,and the weight matrix in the LQR is optimized by employing PSO algorithm.Finally,the controller performance with different weight matrix acquired by different methods is studied.Research results show the LQR controller optimized by PSO algorithm allows the trailer to enter a stable tracking state faster;when the weight matrix R is set to 0.1 and 1,compared to the trailer tracking error corresponding to the manually adjusted weight matrix Q,the trailer tracking error corresponding to the global optimal weight matrix is down by 26.1%and 19.4%respectively in a single U-shaped path,and down by 40.9%and 43.4%respectively in a spiral path on the ramp.
陆柯伟;徐晓美;秦勇杰;张涌
南京林业大学汽车与交通工程学院,南京 210037
交通运输
半挂汽车列车主动转向粒子群优化算法线性二次型调节器最优控制
tractor-semitraileractive steeringparticle swarm optimization algorithmlinear quadratic regulatoroptimal control
《重庆理工大学学报》 2024 (001)
41-49 / 9
江苏省产业前瞻与关键核心技术项目(BE2022053-2)
评论