| 注册
首页|期刊导航|重庆理工大学学报|基于改进扩散模型的图像去雨方法

基于改进扩散模型的图像去雨方法

钱枫 胡桂铭 祝能 邓明星 王洁 许小伟

重庆理工大学学报2024,Vol.38Issue(1):59-66,8.
重庆理工大学学报2024,Vol.38Issue(1):59-66,8.DOI:10.3969/j.issn.1674-8425(z).2024.01.007

基于改进扩散模型的图像去雨方法

Research on image de-raining method based on improved diffusion model

钱枫 1胡桂铭 1祝能 1邓明星 1王洁 1许小伟1

作者信息

  • 1. 武汉科技大学汽车与交通工程学院,武汉 430081
  • 折叠

摘要

Abstract

To address the excessive rain removal and poor generalization of images,this paper proposes a single-image de-raining method by improving diffusion model.The data becomes Gaussian distribution by adding Gaussian noise to the forward process.The dual input information channels of the residual module are designed and the ECA(Efficient Channel Attention)channel attention mechanism module is added to build a noise estimation network.Thus,a global average pooling without reducing the dimension is achieved and the local cross-channel interaction information is captured.The model network is employed to reverse sampling,predict the noise as a rain mark and remove it,and thus achieve image de-raining.By employing simulated raindrop datasets and the Rain 100 dataset,comparative experiments are conducted to compare our improved diffusion model with other four algorithms.The experimental results demonstrate our improved diffusion model effectively removes rain streaks,with peak signal-to-noise ratios of 30.328 5 for raindrops and 34.896 5 for rain lines,and structural similarities of 0.927 1 and 0.962 0 respectively.A real rain image dataset is built,and the YOLOv7 algorithm is employed to perform vehicle detection on the rain-removed images.Our results show the improved diffusion model for rain removal effectively enhances the confidence of vehicle detection,further confirming it has outstanding de-raining performance and generalization capability.

关键词

扩散模型/图像去雨/注意力机制模块/车辆检测

Key words

diffusion model/image de-raining/attention module/vehicle detection

分类

信息技术与安全科学

引用本文复制引用

钱枫,胡桂铭,祝能,邓明星,王洁,许小伟..基于改进扩散模型的图像去雨方法[J].重庆理工大学学报,2024,38(1):59-66,8.

基金项目

国家重点研发计划项目(2022YFE0125200) (2022YFE0125200)

国家自然科学基金项目(51975426) (51975426)

湖北省重点研发计划项目(2022BAA062) (2022BAA062)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文