|国家科技期刊平台
首页|期刊导航|电力系统自动化|基于碳捕集-电转气的矿区综合能源系统协同优化调度

基于碳捕集-电转气的矿区综合能源系统协同优化调度OA北大核心CSTPCD

Collaborative Optimal Scheduling of Coal Mine Integrated Energy System Based on Carbon Capture and Power to Gas

中文摘要英文摘要

"双碳"战略目标下,为促进风光消纳与能源电力低碳转型、提高矿区能源利用率,提出一种含伴生能源和碳捕集与电转气耦合的矿区综合能源系统低碳经济调度模型.首先,综合考虑瓦斯、乏风、涌水等矿区伴生能源利用,建立矿区综合能源系统基本模型,并以碳捕集和电转气设备为耦合单元,促进节能减排与可再生能源消纳.然后,引入奖惩阶梯式碳交易机制,以矿区综合能源系统运行成本最小为目标,建立矿区综合能源系统协同优化调度模型.最后,以中国云南某大型煤矿为例,通过设置不同场景进行仿真分析.结果表明,所提模型能够促进矿区综合能源系统低碳经济运行,提高风光消纳率.

Under the strategic goal of carbon emission peak and carbon neutrality,in order to promote the wind and photovoltaic(PV)accommodation and energy power low-carbon transformation,and improve the energy utilization rate of coal mine,this paper proposes a low-carbon economic scheduling model of coal mine integrated energy system(CMIES)with associated energy and the coupling of carbon capture and power to gas.Firstly,considering the utilization of associated energy in the coal mine such as gas,ventilation and water gushing,the basic model of CMIES is established,and the carbon capture and power-to-gas devices are used as coupling units to promote energy conservation,emission reduction and renewable energy accommodation.Secondly,the reward and punishment ladder-type carbon trading mechanism is introduced,and the collaborative optimal scheduling model of CMIES is established with the goal of minimizing the operation cost of the CMIES.Finally,taking a large coal mine in Yunnan,China as a case,the simulation analysis is carried out by setting different scenarios.The results show that the proposed model can promote the low-carbon economic operation of the CMIES and improve the wind and PV accommodation rate.

骆钊;罗蒙顺;沈鑫;王华;刘德文;喻品钦

昆明理工大学电力工程学院,云南省昆明市 650500云南电网有限责任公司计量中心,云南省昆明市 650051昆明理工大学冶金与能源工程学院,云南省昆明市 650500

矿区综合能源系统碳捕集电转气伴生能源阶梯式碳交易机制

coal mine integrated energy systemcarbon capturepower to gasassociated energyladder-type carbon trading mechanism

《电力系统自动化》 2024 (003)

22-30 / 9

国家重点研发计划资助项目(2022YFB2703500);国家自然科学基金资助项目(52277104);云南省重点研发计划资助项目(202303AC100003). 本文得到云南省应用基础研究计划资助项目(202201AT070220,202101AT070080)和云南省兴滇英才支持计划(KKRD202204024)帮助,特此感谢! This work is supported by National Key R&D Program of China(No.2022YFB2703500),National Natural Science Foundation of China(No.52277104)and Yunnan Provincial Key R&D Program of China(No.202303AC100003).

10.7500/AEPS20230518008

评论