基于双向长短期记忆网络含间接健康指标的锂电池SOH估计OA北大核心CSTPCD
State-of-health Estimation for Lithium-ion Batteries Incorporating Indirect Health Indicators Based on Bi-directional Long Short-term Memory Networks
快速准确地对锂离子电池进行全寿命周期的健康状态(SOH)估计有助于提高储能设备的安全可靠性.提出一种基于间接健康指标(IHI)和鲸鱼优化算法(WOA)优化的双向长短期记忆(BiLSTM)网络相结合的锂电池SOH估计模型,该模型考虑了未来状态对当前SOH的影响.首先,对锂电池恒流恒压(CC-CV)充放电过程进行分析,提取出多个随充放电循环动态变化的电压、电流、温度的时间特征作为IHI,并加入放电负载电压下降时间这一指标;然后,通过相关性分析,从各I…查看全部>>
Rapid and accurate estimation of the state of health(SOH)of lithium-ion batteries throughout their entire life cycle can help improve the safety and reliability of energy storage equipment.An SOH estimation model is proposed,which combines indirect health indicators(IHIs)with bi-directional long short-term memory(BiLSTM)network optimized by the whale optimization algorithm(WOA).The model takes into account the influence of future states on the current SOH.Fi…查看全部>>
方斯顿;刘龙真;孔赖强;牛涛;陈冠宏;廖瑞金
输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆市 400044输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆市 400044输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆市 400044输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆市 400044输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆市 400044输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆市 400044
健康状态锂离子电池间接健康指标鲸鱼优化算法双向长短期记忆网络
state of healthlithium-ion batteryindirect health indicatorwhale optimization algorithmbi-directional long short-term memory network
《电力系统自动化》 2024 (4)
160-168,9
国家电网公司科技项目(5108-202218280A-2-314-XG). This work is supported by State Grid Corporation of China(No.5108-202218280A-2-314-XG).
评论