基于响应面-遗传算法的印制电路板参数识别OA
Parameter Identification of Aircraft Printed Circuit Board Global Finite Element Model Based on RS and GA
印制电路板装配件(Printed Circuit Board Assembly,PCBA)在航空航天设备中有广泛应用,分析和优化航空设备中电子设备振动可靠性的必要前提是建立准确的PCBA有限元模型.针对PCBA有限元模型物理参数难以通过实验获取的问题,本文以某机载电子设备PCBA为案例,首先通过最小分辨率V(Minimum Run with Resolution V,MRRV)的中心复合设计(Central Composite Design,CCD)建立多因素模型响应面函数样本点;然后根据最小二乘法确定响应面函数系数并完成响应面精度检验,构建响应值与模态试验结果误差的多目标函数;再采用快速分类的非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-Ⅱ,NSGA-Ⅱ)进行多目标参数识别,将识别后的参数代入ABAQUS有限元模型进行仿真分析,最后与模态试验和随机振动试验结果进行对比.结果表明:模态频率平均误差减少到2.70%,随机振动响应平均误差为5.83%,验证了此方法对机载振动环境下PCBA模型参数识别的有效性.
The Printed Circuit Board Assembly(PCBA)is widely used in aerospace equipment.The necessary prerequisite for analyzing and optimizing the vibration reliability of electronic equipment in aviation equipment is to establish an accurate PCBA finite element model.Aiming at the physical parameters of PCBA finite element model are difficult to obtain through experiments,taking an aircraft electronic equipment PCBA as a case,first through the Central Composite Design(CCD)of the Minimum Run with Resolution V(MRRV).Secondly,the response surface function coefficients are determined according to the least square method and the response surface accuracy test is completed.The multi-objective function of the error between the response value and the modal test results is constructed.Thirdly,the Non-dominated Sorting Genetic Algorithm-Ⅱ(NSGA-Ⅱ)is used for multi-target parameter identification.The identified parameters are substituted into the Abaqus finite element model for simulation analysis.Lastly,the results of modal test are compared with the random vibration test.The results show that the average error of modal frequency is reduced to 2.70%,and the average error of random vibration response is 5.83%,which verified the effectiveness of this method for the identification of PCBA model parameters in airborne vibration environment.
李晨现;高芳清;舒文浩
西南交通大学力学与航空航天学院,成都 611756西南交通大学力学与航空航天学院,成都 611756||西南交通大学应用力学与结构安全四川省重点实验室,成都 611756西南交通大学力学与航空航天学院,成都 611756
力学
印制电路板数值试验设计模型参数识别响应面法非支配排序遗传算法
printed circuit boardnumerical experimental designmodel parameter identificationresponse surface methodNon-dominated Sorting Genetic Algorithm-Ⅱ
《四川轻化工大学学报(自然科学版)》 2024 (1)
35-42,8
工信部基金项目(MJZ-2018-S-51)
评论