| 注册
首页|期刊导航|水利水电技术(中英文)|数据-知识融合的水利工程建设安全风险灰色因子分解机预测模型

数据-知识融合的水利工程建设安全风险灰色因子分解机预测模型

张可 张政 金伟

水利水电技术(中英文)2024,Vol.55Issue(1):134-143,10.
水利水电技术(中英文)2024,Vol.55Issue(1):134-143,10.DOI:10.13928/j.cnki.wrahe.2024.01.012

数据-知识融合的水利工程建设安全风险灰色因子分解机预测模型

Data and knowledge-driven Grey Factorization Machine prediction model for safety risk in water conservancy engineering construction

张可 1张政 1金伟2

作者信息

  • 1. 河海大学 商学院,江苏南京 211100||河海大学 项目管理研究所,江苏南京 211100
  • 2. 杭州市南排工程建设管理服务中心,浙江杭州 310000
  • 折叠

摘要

Abstract

[Objective]The existing data-driven safety risk prediction method for water conservancy engineering construction is insufficient in the mining and utilization of domain knowledge,and the accuracy and interpretability of the prediction result need to be further improved.In order to establish a data and knowledge-driven safety risk prediction model for water conservancy engineering construction,[Methods]a domain knowledge enhanced Grey Factorization Machine is proposed by combining Grey Clustering and Factorization Machine.Firstly,Grey Clustering based on Possibility Function is introduced to represent the prior knowledge of safety risks from the experts in the field of water conservancy engineering construction.Then,prior knowledge is incorporated into Factorization Machine model in the form of parameters to construct a data and knowledge-driven Grey Factoriza-tion Machine.Finally,a method for calculating model parameters is provided based on Random Gradient Descent,and the model is applied to a case to verify its effectiveness.[Results]The application result show that compared with traditional Factorization Machine,Grey Factorization Machine's Accuracy,Precision,Recall and F1 Score are improved to varying degrees.Compared with Support Vector Machines,Deep Factorization Machine and other benchmark models,Grey Factorization Machine also has better predictive performance.[Conclusion]It indicates that the data and knowledge-driven Grey Factorization Machine can more accurately predict safety risks,and provide better decision-making support for safety risk management in water conservancy engi-neering construction.

关键词

因子分解机/风险交互/领域知识/可能度函数/灰色聚类/影响因素

Key words

factorization machine/risk interaction/domain knowledge/probability function/grey clustering/influence factor

分类

建筑与水利

引用本文复制引用

张可,张政,金伟..数据-知识融合的水利工程建设安全风险灰色因子分解机预测模型[J].水利水电技术(中英文),2024,55(1):134-143,10.

基金项目

国家社会科学基金项目(17BGL156) (17BGL156)

江苏省建设科技项目(521021012) (521021012)

河海大学中央高校基本科研业务费项目(B220207039) (B220207039)

水利水电技术(中英文)

OA北大核心CSTPCD

1000-0860

访问量0
|
下载量0
段落导航相关论文