| 注册
首页|期刊导航|电机与控制应用|基于二维特征提取方法与混合神经网络的接触式采集110kV三相三绕组变压器无载调压异常放电声纹的识别方法

基于二维特征提取方法与混合神经网络的接触式采集110kV三相三绕组变压器无载调压异常放电声纹的识别方法

童旸 黄文礼 李磊 晏雨晴

电机与控制应用2024,Vol.51Issue(2):34-43,10.
电机与控制应用2024,Vol.51Issue(2):34-43,10.DOI:10.12177/emca.2023.179

基于二维特征提取方法与混合神经网络的接触式采集110kV三相三绕组变压器无载调压异常放电声纹的识别方法

A Recognition Method Based on Two-Dimensional Voiceprint Feature Extraction Method and Hybrid Neural Network for Contact-Collected Abnormal Discharge Voiceprint of 110 kV Three-Phase Three-Winding Power Transformer in No-Load Voltage Regulation

童旸 1黄文礼 1李磊 1晏雨晴1

作者信息

  • 1. 安徽南瑞继远电网技术有限公司,安徽 合肥 230088
  • 折叠

摘要

Abstract

Abnormal discharge is a dangerous power transformer fault,which can lead to serious safety hazards if not detected in time.A method for identifying abnormal discharge in transformer is proposed by collecting the voiceprint signal in the transformer box through the contact voice pickup.And a feature extraction method and a deep neural network structure are proposed to achieve efficient identification of abnormal transformer discharge.Firstly,a two-dimensional voiceprint feature extraction method combining Mel frequency and key frequency is designed.Then,a hybrid two-dimensional feature recognition model based on convolutional neural network and Transformer network is used to accurately identify the abnormal discharge voiceprint signal while ensuring the speed.Finally,according to the experimental analysis of the discharge data collected from the 110 kV three-phase three-winding transformer in the no-load voltage regulation process,the recognition speed of the proposed method increases by 0.19 seconds per sample,and the accuracy increases by 4.5%compared with ResNet50.

关键词

变压器异常放电/声纹识别/声纹特征提取/混合神经网络

Key words

abnormal ischarge of transformer/voiceprint

分类

信息技术与安全科学

引用本文复制引用

童旸,黄文礼,李磊,晏雨晴..基于二维特征提取方法与混合神经网络的接触式采集110kV三相三绕组变压器无载调压异常放电声纹的识别方法[J].电机与控制应用,2024,51(2):34-43,10.

基金项目

新型电力系统智能运维安徽省联合共建学科重点实验室成果 Results of the Anhui Provincial Key Laboratory of Joint Co-construction of New Power System Intelligent Operation and Maintenance ()

电机与控制应用

OACSTPCD

1673-6540

访问量0
|
下载量0
段落导航相关论文