| 注册
首页|期刊导航|计算机工程与应用|基于组残差块生成对抗网络的面部表情生成

基于组残差块生成对抗网络的面部表情生成

林本旺 赵光哲 王雪平 李昊

计算机工程与应用2024,Vol.60Issue(5):240-249,10.
计算机工程与应用2024,Vol.60Issue(5):240-249,10.DOI:10.3778/j.issn.1002-8331.2210-0234

基于组残差块生成对抗网络的面部表情生成

Facial Expression Generation Based on Group Residual Block Generative Adversarial Network

林本旺 1赵光哲 1王雪平 1李昊1

作者信息

  • 1. 北京建筑大学 电气与信息工程学院,北京 102616
  • 折叠

摘要

Abstract

Facial expression generation is the generation of facial images with expressions through a certain expression calculation method,which is widely used in face editing,film and television production,and data augmentation.With the advent of generative adversarial network(GAN),facial expression generation has made significant progress,but problems such as overlapping,blurring,and lack of realism still occur in facial expression generation images.In order to address the above issues,group residuals with attention mechanism generative adversarial network(GRA-GAN)is proposed to generate high-quality facial expressions.Firstly,an adaptive mixed attention mechanism(MAT)is embedded in the generative network before downsampling and after upsampling to adaptively learn the key region features and enhance the learning of key regions of the image.Secondly,the idea of grouping is integrated into the residual network,and the group residuals block with attention mechanism(GRA)module is proposed to achieve better generation effect.Finally,the experimental verification is carried out on the public dataset RaFD.The experimental results show that the proposed GRA-GAN outper-forms the related methods in both qualitative and quantitative analysis.

关键词

生成对抗网络/表情生成/注意力机制/组残差块

Key words

generative adversarial network(GAN)/expression generation/attention mechanism/group residual block

分类

信息技术与安全科学

引用本文复制引用

林本旺,赵光哲,王雪平,李昊..基于组残差块生成对抗网络的面部表情生成[J].计算机工程与应用,2024,60(5):240-249,10.

基金项目

国家自然科学基金(62176018). (62176018)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文