| 注册
首页|期刊导航|计算机工程与应用|改进YOLOX-s的密集垃圾检测方法

改进YOLOX-s的密集垃圾检测方法

谢若冰 李茂军 李宜伟 胡建文

计算机工程与应用2024,Vol.60Issue(5):250-258,9.
计算机工程与应用2024,Vol.60Issue(5):250-258,9.DOI:10.3778/j.issn.1002-8331.2210-0235

改进YOLOX-s的密集垃圾检测方法

Improving YOLOX-s Dense Garbage Detection Method

谢若冰 1李茂军 1李宜伟 1胡建文1

作者信息

  • 1. 长沙理工大学 电气与信息工程学院,长沙 410114
  • 折叠

摘要

Abstract

To address the problems of low recognition rate,inaccurate localization and false detection and omission of tar-gets to be detected in densely stacked multi-species garbage detection,a garbage detection method in corporating multi-headed self-attention mechanism to improve YOLOX-s is proposed.Firstly,the Swin Transformer module is embedded in the feature extraction network,and the multi-headed self-attention mechanism based on the sliding window operation is introduced to make the network take into account the global feature information and the key feature information to reduce the false detection phenomenon.Secondly,the deformable convolution is used in the prediction output network to refine the initial prediction frame and improve the localization accuracy.Finally,on the basis of the EIoU,loss weighting coeffi-cients are introduced to propose a weighted IoU-EIoU loss,which adaptively adjusts the degree of concern for different losses at different stages of training to further accelerate the convergence of the training network.Testing on a public 204-class spam detection dataset,the results show that the average mean accuracy of the propose improve algorithm can reach 80.5% and 92.5% ,respectively,which is better than the current popular target detection algorithms,and the detection speed is fast to meet the real-time requirements.

关键词

密集垃圾检测/多头自注意力机制/YOLOX-s/深度学习

Key words

dense spam detection/multi-head self-attention mechanism/YOLOX-s/deep learning

分类

信息技术与安全科学

引用本文复制引用

谢若冰,李茂军,李宜伟,胡建文..改进YOLOX-s的密集垃圾检测方法[J].计算机工程与应用,2024,60(5):250-258,9.

基金项目

国家自然科学基金(62271087). (62271087)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文