| 注册
首页|期刊导航|计算机工程与应用|高判别精度的区块链交易合法性检测方法

高判别精度的区块链交易合法性检测方法

蔡元海 宋甫元 黎凯 陈彦宇 付章杰

计算机工程与应用2024,Vol.60Issue(5):271-280,10.
计算机工程与应用2024,Vol.60Issue(5):271-280,10.DOI:10.3778/j.issn.1002-8331.2211-0395

高判别精度的区块链交易合法性检测方法

Blockchain Transaction Legitimacy Discrimination with High Recognition Accuracy

蔡元海 1宋甫元 2黎凯 2陈彦宇 2付章杰1

作者信息

  • 1. 南京信息工程大学 数字取证教育部工程研究中心,南京 210044||西安电子科技大学 综合业务网理论及关键技术国家重点实验室,西安 710071
  • 2. 南京信息工程大学 数字取证教育部工程研究中心,南京 210044
  • 折叠

摘要

Abstract

Legitimacy discrimination of transactions on the blockchain is of great importance for the regulation of crypto-currencies.In order to effectively take into account the information of the transaction itself and the topological informa-tion in the discriminative process,and to improve the discrimination accuracy,this paper proposes a multi-perspective legitimacy detection method that incorporates the trustworthy deep forest.Firstly,a trustworthy deep forest(TForest)based on generating trustworthy features is designed.It gives sufficient discrimination to subsamples by feature reordering and combines variable sliding windows to extract differentiable subsamples in a balanced and confusion-free manner.The discrimination accuracy of the deep forest is improved on the basis of significantly reducing the dimensionality of generated features.Then,an ensemble strategy is designed.It uses a two-stage layer-by-layer optimization approach to effectively fuse three types of base discriminators,namely trustworthy deep forest,Transformer graph network and ResNet.The strategy is based on the difference of base models for positive and negative samples recognition ability,and utilizes two kinds of information,finally,a high-accuracy multi-perspective analysis model T2Rnet is constituted.The experimental results on the Elliptic dataset show that the F1-score of the model achieves 83.11% ,which is 31.6% higher than the baseline graph convolution method.The model has reliable transaction legitimacy discrimination performance.

关键词

区块链/合法性检测/可信深度森林/神经网络/双阶段集成

Key words

blockchain/legitimacy discrimination/trustworthy deep forest/neural network/two-stage ensemble strategy

分类

信息技术与安全科学

引用本文复制引用

蔡元海,宋甫元,黎凯,陈彦宇,付章杰..高判别精度的区块链交易合法性检测方法[J].计算机工程与应用,2024,60(5):271-280,10.

基金项目

国家重点研发计划(2021YFB2700900). (2021YFB2700900)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文