|国家科技期刊平台
首页|期刊导航|计算机工程与应用|多模态检索研究综述

多模态检索研究综述OA北大核心CSTPCD

Review of Research on Multimodal Retrieval

中文摘要英文摘要

多模态数据的日益增长使得多模态检索技术也相继受到了不少关注.随着汽车、医学等行业引入计算机与大数据技术,大量的行业数据其本身都是以多模态形式呈现出来的,行业的快速发展使人们对信息的需求不断增加,单一模态数据检索已经无法满足人们对信息的需求.为了解决这些问题,满足一种模态的数据检索其他模态数据的需求,通过文献的查阅对多模态检索的方法进行研究,分析了公共子空间、深度学习、多模态哈希算法等不同的研究方法,梳理了近年来提出的解决这些问题的多模态检索技术.最后,对近几年来提出的多模态检索方法根据检索的准确性、检索的效率以及特点等多方面进行评价对比;对多模态检索所遇到的挑战进行分析,并展望多模态检索未来的应用前景.

With the increasing of multimodal data,multimodal retrieval technology has received a lot of attention.With the introduction of computer and big data technology in automobile,medical and other industries,a large amount of indus-try data itself are presented in a multi-modal form.With the rapid development of the industry,people's demand for infor-mation is constantly increasing,and single modal data retrieval can no longer meet people's demand for information.In order to solve these problems and meet the needs of data retrieval from one mode and other modes,this paper studies multi-modal retrieval methods through literature review,analyzes different research methods such as common subspace,deep learning and multi-modal Hash algorithm,and sorts out the multi-modal retrieval techniques proposed by researchers in recent years to solve these problems.Finally,the multimodal retrieval methods proposed in recent years are evaluated and compared according to the accuracy,efficiency and characteristics of the retrieval.This paper analyzes the challenges encountered in multimodal retrieval and looks forward to the future application prospects of multimodal retrieval.

金涛;金冉;侯腾达;袁杰;顾骁哲

浙江万里学院 大数据与软件工程学院,浙江 宁波 315100浙江万里学院 大数据与软件工程学院,浙江 宁波 315100||江苏电力信息技术有限公司,南京 210003

计算机与自动化

多模态检索公共子空间深度学习哈希算法

multimodal retrievalpublic subspacedeep learningHash algorithm

《计算机工程与应用》 2024 (005)

智能室内环境下复杂数据的管理和挖掘研究

62-75 / 14

国家自然科学基金(61472348,61672455);教育部人文社科项目(17YJCZH076);浙江省基础公益研究计划(LGF18F020001,LGF21F020022);宁波市重大科技攻关暨"揭榜挂帅"项目(20211ZDYF020218).

10.3778/j.issn.1002-8331.2305-0294

评论