| 注册
首页|期刊导航|计算机与数字工程|改进YOLOv5s的车辆目标检测算法研究与实现

改进YOLOv5s的车辆目标检测算法研究与实现

周金治 景瑞琦 吴静 刘梦宇

计算机与数字工程2023,Vol.51Issue(11):2546-2552,2579,8.
计算机与数字工程2023,Vol.51Issue(11):2546-2552,2579,8.DOI:10.3969/j.issn.1672-9722.2023.11.014

改进YOLOv5s的车辆目标检测算法研究与实现

Research and Implementation of Vehicle Target Detection Algorithm Based on Improved YOLOv5s

周金治 1景瑞琦 1吴静 1刘梦宇1

作者信息

  • 1. 西南科技大学 绵阳 621000
  • 折叠

摘要

Abstract

Aiming at the requirements of the vehicle target detection algorithm in the actual traffic scene,such as occupying small resources,ensuring real-time performance and high accuracy,a vehicle target detection algorithm based on the improved YO-LOv5s is proposed.Firstly,GhostNet is introduced to improve the Backbone of YOLOv5s,which reduces the computation of the net-work and improves the detection speed.Secondly,the CBAM attention mechanism is integrated to improve the difficulty of accurate detection under various weather and light conditions.Then,Soft-NMS is used instead of NMS to reduce the problem of missing de-tection caused by traffic congestion.Finally,a comparative ablation experiment is conducted to verify the performance of the im-proved algorithm,and then it is deployed to the embedded device for testing.According to the experimental results,the resource oc-cupancy of the model is reduced by 34.76%under the condition that the improved algorithm guarantees high average accuracy,and the frame rate on the embedded platform can reach 29 frame/s,which can meet the requirements of practical applications.

关键词

YOLOv5/目标检测/注意力机制/嵌入式平台/TensorRT

Key words

YOLOv5/target detection/attention mechanism/embedded platform/TensorRT

分类

信息技术与安全科学

引用本文复制引用

周金治,景瑞琦,吴静,刘梦宇..改进YOLOv5s的车辆目标检测算法研究与实现[J].计算机与数字工程,2023,51(11):2546-2552,2579,8.

基金项目

国家自然科学基金项目(编号:61771411)资助. (编号:61771411)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文