差转计算算法在连续型因素上的改进与应用OA北大核心CHSSCDCSTPCD
Improvement and Application of Set Subtraction and Rotation Calculation on Continuous Factors
为解决差转计算算法在连续型数据下挖掘出的推理知识可靠性低、知识泛化效果差和泛化过程存在一定判别风险的问题,在概率论与数理统计、因素空间理论背景下,结合差转计算算法原理,文章提出了一种新的连续型数据离散化方法,并构造了累积决定度、相对贡献度用于度量推理知识的可信赖程度.为验证所提离散化方法的有效性,将其与差转计算算法结合并应用于恶性肿瘤辅助诊断中,并以决策树为对比算法,实证结果表明:所提离散化方法与差转计算算法的融合有效提升了算法泛化效果,融合后的差转计算算法决策综合性能与决策树相当,且知识表达较决策树简单;构造的累积决定度、相对贡献度两个指标能够有效度量推理知识的贡献度和可信赖程度.
In order to solve the problem of low degree of reliability of inference knowledge mined by the Set Subtraction and Rotation calculation(S&R),poor generalization of knowledge,and certain judgmental risks in the generalization process based on continuous-type data,in the context of probability theory and mathematical statistics and factor space theory,this paper combines with the S&R calculation principle to propose a new discrete method for continuous type data and construct the cumulative deter-minant,relative contribution for measuring the confidence level of inferred knowledge.In order to validate the effectiveness of the discretization method,it is combined with the S&R calculation and applied to the auxiliary diagnosis of malignant tumors,and the decision tree is used as the comparison algorithm.The empirical results show that the fusion of the proposed discretization method and the S&R calculation improves the generalization effect of the computation algorithm effectively,that the overall performance of the fused algorithm decision-making is comparable to that of the decision tree,but the knowledge representation is simpler than decision tree,and that the two constructed indicators of cumulative determination and relative contribution are able to effectively measure the contribution and trustworthiness of inferred knowledge.
赵静;包研科
黔南民族师范学院 数学与统计学院,贵州 都匀 558000||黔南民族师范学院 黔南州工业自动化与机器视觉重点实验室,贵州 都匀 558000辽宁工程技术大学 理学院,辽宁 阜新 123000
数学
知识挖掘因素空间差转计算算法辅助诊断
knowledge miningfactor spacethe S&R computing algorithmauxiliary diagnosis
《统计与决策》 2024 (004)
38-44 / 7
贵州省教育厅高等学校科学研究项目(青年项目)(黔教技[2022]378号;黔教技[2022]377号;黔教技[2022]380号;黔教技[2022]386号)
评论