| 注册
首页|期刊导航|应用数学和力学|导电压头作用下的功能梯度压电涂层二维黏附接触问题研究

导电压头作用下的功能梯度压电涂层二维黏附接触问题研究

韩立夫 刘铁军

应用数学和力学2024,Vol.45Issue(2):227-244,18.
应用数学和力学2024,Vol.45Issue(2):227-244,18.DOI:10.21656/1000-0887.440238

导电压头作用下的功能梯度压电涂层二维黏附接触问题研究

The 2D Adhesive Contact of the Functionally Graded Piezoelectric Coating Under a Conducting Indenter

韩立夫 1刘铁军2

作者信息

  • 1. 内蒙古工业大学 理学院,呼和浩特 010051||河套学院,内蒙古 巴彦淖尔 015000
  • 2. 内蒙古工业大学 理学院,呼和浩特 010051
  • 折叠

摘要

Abstract

Nano-indentation experiments are an important means of studying the mechanical properties and sur-face morphology of materials.With the decrease of the contact area,the adhesion between the indenter and the contact surface of the specimen cannot be ignored.Therefore,the adhesion effect plays an important role in the contact problem under the action of the indenter.The functional graded piezoelectric material(FGPM)has the advantages of both graded and piezoelectric materials,and can effectively avoid contact damage and failure of coatings.The adhesive contact problem of FGPMs under conducting indenters was studied.With exponentially changing material parameters of the FGPM coating,based on the Maugis adhesive model,the control singular integral equation for the 2D frictionless adhesive contact problem of the FGPM coating under the conducting in-denter,was obtained through the Fourier integral transform,and the Erdogan-Gupta numerical method was used to solve the equation.The effects of the adhesive stress,the graded parameter and the charge of the inden-ter on the electro-mechanical coupling response were obtained.The results provide a theoretical basis for im-proving the contact behavior of material surfaces with FGPM coatings,and help design piezoelectric structures and devices.

关键词

功能梯度压电涂层/黏附/Fourier积分变换/奇异积分方程

Key words

functionally graded piezoelectric coating/adhesion/Fourier integral transform/singular integral e-quation

分类

力学

引用本文复制引用

韩立夫,刘铁军..导电压头作用下的功能梯度压电涂层二维黏附接触问题研究[J].应用数学和力学,2024,45(2):227-244,18.

基金项目

国家自然科学基金(11662011) (11662011)

内蒙古自然科学基金(2020MS01022) (2020MS01022)

应用数学和力学

OA北大核心CSTPCD

1000-0887

访问量0
|
下载量0
段落导航相关论文