基于CT图像的肺结核病灶治愈状态判定深度学习模型的建立OA北大核心CSTPCD
Deep learning to determine the healing status of pulmonary tuberculosis lesions on CT images
目的:基于CT影像构建深度学习模型判定肺结核病灶的活动性.方法:回顾性纳入2018年12月至2020年12月首都医科大学附属北京胸科医院就诊的具有治疗前、中和后时间点的CT影像资料的肺结核治愈患者(102例),按照8∶2的比例将病灶随机分为训练集和测试集.另外,于2021年10月至2022年12月在同一家医院前瞻性纳入肺结核治愈患者(72例),在治疗前、中和后时间点纳入CT资料作为独立验证集.通过迁移学习方式进行深度学习模型构建;采用掩膜区域卷积神经网络(Mask R-CNN)架构实现病灶自动分割及活动性判定.基于三维病灶标签进行模型训练,通过计算测试集受试者工作特性(ROC)曲线下面积(AUC)、敏感度、特异度,并与独立验证集比较,评估模型对肺结核病灶活动性的判定效能.结果:回顾性队列共纳入符合标准的肺结核治愈患者102例,共收集到770份CT影像资料;332个病灶为活动性,464个病灶为非活动性.前瞻性队列纳入肺结核治愈患者72例,共收集到540份CT影像资料.基于迁移学习的Mask R-CNN深度学习模型计算,测试集的AUC为87.5%,敏感度为85.7%,特异度为78.6%;独立验证集的AUC为79.9%,敏感度为78.7%,特异度为75.0%o结论:基于迁移学习的Mask R-CNN深度学习模型在小样本量肺结核病灶活动性预测中展现出一定潜力,可以为快速、自动的临床决策提供科学参考.
Objective:To construct a deep learning model based on CT images for activity assessment of pulmonary tuberculosis lesions.Methods:A retrospective cohort of 102 cured pulmonary tuberculosis patients at Beijing Chest Hospital,Capital Medical University between December 2018 and December 2020 was included,CT data were collected before,during,and after treatment.Lesions were randomly divided into training and test sets with an 8∶2 ratio.Additionally,a prospective cohort of 72 cured pulmonary tuberculosis patients was enrolled between October 2021 and December 2022,CT datasets were collected for an independent validation set.A deep learning model was constructed through transfer learning using the Mask R-CNN architecture to achieve automatic lesion segmentation and activity determination.The model was trained based on three-dimensional lesion labels from the training set,and its performance in determining the activity of pulmonary tuberculosis lesions was evaluated in the test set and independent validation set by calculating the area under the receiver operating characteristic curve(AUC),sensitivity,and specificity.Results:A retrospective cohort of 102 cured pulmonary tuberculosis patients who met the criteria was included,and a total of 770 CT imaging data were collected;332 lesions were active,and 464 lesions were inactive.A prospective cohort of 72 cured patients with pulmonary tuberculosis was included,and a total of 540 CT imaging data were collected.The transfer learning-based Mask R-CNN deep learning model achieved an AUC of 87.5%,sensitivity of 85.7%,and specificity of 78.6%in the test set.In the independent validation set,the model obtained an AUC of 79.9%,sensitivity of 78.7%,and specificity of 75.0%.Conclusion:The transfer learning-based Mask R-CNN deep learning model has shown promising potential in predicting the activity of small-scale pulmonary tuberculosis lesions,could offer valuable scientific insights for rapid and automatic clinical decision-making.
秦李祎;刘远明;李卫民;吕平欣;郭琳;钱令军;肖谦;杨阳;尚园园;贾俊楠;初乃惠
首都医科大学附属北京胸科医院/国家结核病临床实验室/耐药结核病研究北京市重点实验室,北京 101149深圳市智影医疗科技有限公司,深圳 518109北京老年医院影像科,北京 100095首都医科大学附属北京胸科医院影像科,北京 101149首都医科大学附属北京胸科医院结核一科,北京 101149||首都医科大学附属北京友谊医院老年科,北京 100050首都医科大学附属北京胸科医院结核一科,北京 101149
临床医学
结核,肺体层摄影术,X线计算机模型,结构人工智能
Tuberculosis,pulmonaryTomography,X-ray computedModels,structuralArtificial intelligence
《中国防痨杂志》 2024 (003)
272-278 / 7
National Natural Science Foundation of China(82373641);Shenzhen Science and Technology Program(KQTD2017033110081833);Guangzhou Basic Research Program City School(Institute)Enterprise Joint Funding Project(2023A03J0536)国家自然科学基金(82373641);深圳市科技计划资助项目(KQTD2017033110081833);广州市基础研究计划市校(院)企联合资助项目(2023A03J0536)
评论