基于多期相CT图像的深度学习ResNet18和ResNet50模型诊断肾结核的效能比较OA北大核心CSTPCD
Comparison of the performance of deep learning models ResNet18 and ResNet50 based on multiphase CT for the diagnosis of renal tuberculosis
目的:探讨基于CT图像构建深度学习模型对肾结核进行鉴别诊断的可行性.方法:回顾性分析2018年9月至2020年8月经解放军总医院第八医学中心收治,并经组织病理学或临床确诊的肾结核、肾肿瘤、肾盂肾炎、正常肾脏、肾囊肿、肾积水患者.共纳入200例患者共400个肾脏的CT图像数据.将400个肾脏CT图像分为结核组(114个)和非结核组(286个),并且按8∶2的比例分为训练集(肾结核:85个;非肾结核:235个)和测试集(肾结核:29个;非肾结核:51个).基于训练集通过ResNet18和ResNet50网络分别构建肾脏平扫期、皮髓质期、实质期和排泄期的深度学习模型;基于测试集评估所构建模型对肾结核的诊断效能,计算受试者工作特征曲线(ROC)曲线下面积(AUC)、敏感度、特异度、准确率和F1分数.结果:训练集中,结核组平均年龄为(41.27± 11.75)岁,明显低于非结核组[(54.05±13.97)岁];测试集中,结核组平均年龄为(44.06±11.95)岁,明显低于非结核组[(56.12±10.73)岁],差异均有统计学意义(t值分别为5.753、3.444,P值均<0.05).训练集中,结核组男性占66.7%(40/60),女性占33.3%(20/60);非结核组男性占60.9%(78/128),女性占39.1%(50/128);两组差异无统计学意义(x2=0.009,P=0.924).测试集中,结核组男性占64.3%(18/28),女性占35.7%(10/28);非结核组男性占58.7%(27/46),女性占41.3%(19/46);两组差异无统计学意义(x2=0.018,P=0.894).ResNet18模型肾脏各期相的AUC、敏感度、特异度、准确率和F1分数均高于ResNet50模型.ResNet18模型中以皮髓质期为最佳,AUC、敏感度、特异度、准确率和F1分数分别为0.925、93.1%、86.3%、88.7%和0.857;ResNet50模型皮髓质期AUC、敏感度、特异度、准确率和F1分数分别为0.858、72.4%、84.3%、80.0%和0.724.结论:基于多期相CT图像的ResNet18模型诊断肾结核的效能优于ResNet50模型,ResNet18模型中以皮髓质期诊断效能最佳,有较高的临床应用价值.
Objective:To investigate the feasibility of deep learning models based on CT images for the differential diagnosis of renal tuberculosis.Methods:A retrospective analysis was conducted on 200 patients(400 kidneys)admitted to the Eighth Medical Center of the General Hospital of the PLA from September 2018 to August 2020,diagnosed with renal tuberculosis,renal tumors,pyelonephritis,normal kidneys,renal cysts,or hydronephrosis by pathological or clinical confirmation.The 400 CT images of the kidneys were divided into the tuberculosis group(n=114)and the non-tuberculosis group(n=286),and then further divided into a training set(renal tuberculosis:85;non-renal tuberculosis:235)and a test set(renal tuberculosis:29;non-renal tuberculosis:51)with the ratio of 8:2.Deep learning models for the unenhanced phase,corticomedullary phase,nephrographic phase,and excretory phase of the kidneys were constructed using the ResNet18 and ResNet50 networks based on the training set.The diagnostic performance of the constructed models for renal tuberculosis was evaluated based on the test set,including the calculation of the area under the receiver operating characteristic curve(AUC),sensitivity,specificity,accuracy,and F1 score.Results:In the training set,the average age of the tuberculosis group((41.27±11.75)years)was lower than that of the non-tuberculosis group((54.05±13.97)years),with a statistically significant difference(t=5.753,P<0.05).In the test set,the average age of the tuberculosis group((44.06±11.95)years)was significantly lower than that of the non-tuberculosis group((56.12±10.73)years)(t=3.444,P<0.05).In the training set,males accounted for 66.7%(40/60)and females accounted for 33.3%(20/60)in the tuberculosis group,while in the non-tuberculosis group,males accounted for 60.9%(78/128)and females accounted for 39.1%(50/128);however,the gender distribution showed no statistically significant difference in the training set(x2=0.009,P=0.924).In the test set,64.3%(18/28)of individuals in the tuberculosis group were male,and 35.7%(10/28)were female;in the non-tuberculosis group,58.7%(27/46)were male,and 41.3%(19/46)were female,with no significant difference(x2=0.018,P=0.894).The AUG,sensitivity,specificity,accuracy,and F1 score of the four-phase images were all higher in the ResNet18 model compared to those in the ResNet50 model.The ResNetl8 model demonstrated superior performance in the corticomedullary phase,with an AUC of 0.925 and corresponding sensitivity,specificity,accuracy,and F1 score of 93.1%,86.3%,88.7%,and 0.857,respectively.In contrast,the AUC for the medullary phase of the ResNet50 model was 0.858,with corresponding sensitivity,specificity,accuracy,and F1 score of 72.4%,84.3%,80.0%,and 0.724,respectively.Conclusion:The diagnostic performance of the ResNet18 model for renal tuberculosis based on multi-phase CT images was superior to that of the ResNet50 model.And the corticomedullary phase exhibited the best diagnostic performance in the ResNet18 model,indicating the high clinical application value.
易婉晴;郑雪怡;张状;孙维荣;袁小东
河北北方学院,张家口 075000秦皇岛市第二医院医学影像科,秦皇岛 066000解放军总医院第八医学中心放射诊断科,北京 100089
特种医学
结核,肾体层摄影术,X线计算机图像解释,计算机辅助诊断,鉴别
Tuberculosis,renalTomography,X-ray computedImage interpretation,computer-assistedDiagnosis,differential
《中国防痨杂志》 2024 (003)
288-293 / 6
National Natural Science Foundation of China(81671680)国家自然科学基金(81671680)
评论