基于CT影像组学结合临床特征鉴别肺结核与非结核分枝杆菌肺病的研究OA北大核心CSTPCD
Differentiation of pulmonary tuberculosis and nontuberculous mycobacterial pulmonary disease based on computed tomography radiomics combined with clinical features
目的:探讨基于CT影像组学结合临床特征在鉴别肺结核(pulmonary tuberculosis,PTB)与非结核分枝杆菌肺病(nontuberculous mycobacteria pulmonary disease,NTM-PD)中的价值.方法:对 2019 年 1 月 1 日至2023年3月31日河南省新乡医学院第一附属医院收治的经细菌培养证实的NTM-PD患者和PTB患者的临床资料及CT图像进行回顾性分析.根据分枝杆菌培养结果将所有患者分为PTB组(75例)和NTM-PD组(58例).分析患者的临床特征,并将两组间差异有统计学意义的临床特征用于构建临床模型.以CT图像中空洞性病灶作为研究对象,共200个病灶被纳入研究,然后将其按照7∶3的比例随机分为训练集和测试集.使用逻辑回归分类器构建影像组学模型.结合影像组学特征和临床特征构建联合模型,使用受试者工作特征曲线(ROC)及曲线下面积(AUC)、校准曲线评估模型在训练集和测试集中的诊断效能.结果:单因素分析显示,PTB组年龄[中位数(四分位数)]为45(26,66)岁,与NTM-PD组年龄[63(54,70)岁]比较差异有统计学意义(Z=-3.184,P<0.001);PTB组 BMI(19.95±2.83)与 NTM-PD 组 BMI(18.78±2.59)比较差异有统计学意义(t=2.469,P=0.015);PTB 组 γ-干扰素释放试验(interferon-γ release assays,IGRA)阳性患者 55 例(73.33%),NTM-PD 组 IGRA 阳性患者16例(27.59%),两者阳性率比较差异有统计学意义(x2=27.505,P<0.001).多因素分析显示,年龄(OR=0.969,P=0.004)与IGRA(OR=6.026,P<0.001)均是鉴别PTB与NTM-PD的独立预测因子.临床模型的AUC值在训练集和测试集中分别为0.832(95%CI:0.765~0.899)和0.800(95%CI:0.689~0.911);影像组学模型在训练集和测试集中的AUC值分别为0.974(95%CI:0.952~0.996)和0.939(95%CI:0.877~1.000);联合模型在训练集和测试集中的AUC值分别为0.993(95%CI:0.986~1.000)和0.995(95%CI:0.985~1.000).结论:临床特征结合影像组学特征的联合模型是一种无创、方便、快捷的辅助诊断方法,能够快速有效地鉴别PTB与 NTM-PD.
Objective:To explore the value of combining CT-based radiomics with clinical features in distinguishing pulmonary tuberculosis(PTB)from nontuberculous mycobacteria pulmonary disease(NTM-PD).Methods:A retrospective analysis was conducted on clinical data and CT images of NTM-PD and PTB patients confirmed with culture from The First Affiliated Hospital of Xinxiang Medical University from January 1,2019,to March 31,2023.Based on the results of bacterial culture,all patients were divided into the PTB group(58 cases)and the NTM-PD group(75 cases).Clinical features were analyzed,and statistically significant features were used to construct a clinical model.CT images were used to study cavitary lesions,with a total of 200 lesions included in the study.The lesions were randomly divided into a training set and a testing set in a 7∶3 ratio.A logistic regression classifier was used to construct a radiomics model.A combined model was built by integrating radiomics features and clinical features.The diagnostic performance of the models in the training and testing sets was evaluated by sensitivity,specificity,accuracy,receiver operating characteristic(ROC)curve,area under the curve(AUC),and calibration curve.Results:Univariate analysis showed that there was statistically significant difference in age between the PTB group(median(quartile)age 45(26,66)years)and the NTM-PD group(median(quartile)age 63(54,70)years)(Z=-3.184,P<0.001).There was also statistically significant difference in BMI between the PTB group(19.95±2.83)and the NTM-PD group(18.78±2.59)(t=2.469,P=0.015).The proportions of patients with positive interferon-gamma release assays(IGRA)results were significantly different between the PTB group(55 cases,73.33%)and the NTM-PD group(16 cases,27.59%)(x2=27.505,P<0.001).Multivariate analysis showed that age(OR=0.969,P=0.004)and IGRA(OR=6.026,P<0.001)were independent predictive factors for distinguishing PTB from NTM-PD.The AUC values of the clinical model in the training and testing sets were 0.832(95%CI:0.765-0.899)and 0.800(95%CI:0.689-0.911),respectively.The AUC values of the radiomics model in the training and testing sets were 0.974(95%CI:0.952-0.996)and 0.939(95%CI:0.877-1.000),respectively.The AUC values of the combined model in the training and testing sets were 0.993(95%CI:0.986-1.000)and 0.995(95%CI:0.985-1.000),respectively.Conclusion:The combined model incorporating clinical features and radiomics features is a non-invasive,convenient,and rapid diagnostic method that can effectively distinguish PTB from NTM-PD.
姚阳阳;梁长华;韩东明;崔俊伟;潘犇;王慧慧;魏正琦;甄思雨;危涵羽
河南省新乡医学院第一附属医院放射科,新乡 453100河南省新乡医学院第一附属医院磁共振科,新乡 453100河南省新乡医学院第一附属医院结核科,新乡 453100
临床医学
结核,肺分枝杆菌感染诊断,鉴别体层摄影术,X线计算机影像组学
Tuberculosis,pulmonaryMycobacterium infectionsDiagnosis,differentialTomography,X-ray computeRadiomics
《中国防痨杂志》 2024 (003)
302-310 / 9
评论