|国家科技期刊平台
首页|期刊导航|郑州大学学报(工学版)|云原生环境下基于移动目标防御的ReDoS防御方法

云原生环境下基于移动目标防御的ReDoS防御方法OACSTPCD

ReDoS Defense Method Based on Moving Target Defense in Cloud-native Environment

中文摘要英文摘要

针对云原生环境中正则表达式拒绝服务(ReDoS)攻击的防御方式存在效率低、无法进行主动防御的问题,提出了基于移动目标防御(MTD)技术的ReDoS攻击防御方法.首先基于云原生环境下的微服务应用特点,对攻防双方的行为进行了分析;其次,基于 Kuberneters设计了基于 MTD 的防御系统,并提出基于拓扑信息和请求到达速率的动态和静态的多维微服务权重指标、基于排队论的服务效率判断指标以及轮换时机选择方法来指导关键微服务的选择和关键微服务的轮换时机;最后,给出了基于异构度和服务效率的多维指标 MTD 异构轮换算法,并使用Python进行了仿真,结果表明:所提算法防御时延比动态伸缩缩短了 50%左右;并且防御开销在第一次攻击之后趋于平稳,不会持续增长.

In addressing the inefficiencies and limitations in proactive defense against Regular Expression Denial of Service(ReDoS)attacks in cloud-native environments,we have developed a defense method based on Moving Tar-get Defense(MTD)technology.Initially,we analyzed the behaviors of both attackers and defenders within mi-croservice applications characteristic of cloud-native environments.Subsequently,leveraging Kubernetes,we de-signed an MTD-based defense system.This system incorporates dynamic and static multi-dimensional microservice weight indices based on topology information and request arrival rates,as well as service efficiency judgment indices based on queue theory.It also includes a method for selecting the timing of key microservice rotations to guide the selection and rotation timings of critical microservices.Finally,we introduced a multi-dimensional MTD heteroge-neous rotation algorithm,grounded in heterogeneity and service efficiency,and conducted simulations using Py-thon.Experimental results indicate that our proposed algorithm reduces defense latency by approximately 50%com-pared to dynamic scaling and that defense costs stabilize after the initial defense against an attack,preventing con-tinuous growth.

扈红超;张帅普;程国振;何威振

郑州大学 中原网络安全研究院,河南 郑州 450001郑州大学 网络安全学院,河南 郑州 450001信息工程大学 信息技术研究所,河南 郑州 450001

计算机与自动化

微服务ReDoS移动目标防御异构正则表达式

microservicesReDoSmoving target defenseheterogeneousregular expression

《郑州大学学报(工学版)》 2024 (002)

72-79 / 8

国家自然科学基金资助项目(2072467);国家重点研发计划项目(2021YFB1006200,2021YFB1006201)

10.13705/j.issn.1671-6833.2023.05.009

评论