|国家科技期刊平台
首页|期刊导航|计算机与现代化|基于多尺度频率注意力的多阶段去雨算法

基于多尺度频率注意力的多阶段去雨算法OACSTPCD

Multi-stage Rain Removal Algorithm Based on Multi-scale Frequency Attention

中文摘要英文摘要

雨天气候下户外视觉系统捕获到的图像易受到雨纹的干扰,导致成像质量下降,影响后续视觉任务的进行.去除图像中的雨纹并获得高质量的图像对后续计算机视觉任务处理尤为重要.本文提出基于多尺度频率注意力的多阶段去雨算法,旨在去除单幅雨图像中的雨纹,恢复出高质量的图像.首先结合雨纹的多样性,设计多阶段去雨模型,将去雨过程分解成多个子过程,逐步去除雨纹;其次针对目前去雨算法中存在过平滑问题,改进长短期记忆循环网络实现多阶段去雨,引入频率注意力机制加强对雨纹的关注,设计多尺度特征提取方式表征全局信息;最后通过细节恢复模块加强对背景成分的保留.实验结果表明,在合成数据集和真实数据集上本文算法都能够有效去除雨纹并保留完整的背景信息,有较好的去雨效果.

Rain streaks interfere with the photos the outside vision system takes in rainy weather,which caused lowering the im-age quality and affecting the subsequent vision tasks.Therefore,for the following computer vision tasks,it is very crucial to re-move the rain streaks from the photos and get high-quality images.The goal of the multi-stage rain removal method we present in this research is to recover a high quality image by removing rain streaks from a single rain image using multi-scale frequency at-tention.Firstly,a multi-stage rain removal model is designed by integrating the variety of rain streaks,decomposing the rain streaks removal process into multiple sub-processes,and eliminating rain streaks step by step.Second,a long and short-term memory recurrent network is improved to achieve multi-stage rain streaks removal,in which the frequency attention mechanism is introduced to strengthen the attention to rain streaks and a multi-scale feature extraction method is designed to characterize the global information.This addresses the issue of oversmoothing in the current rain streaks removal algorithms.The detail restoration module's final purpose is to fortify background elements.Experiment results show that the proposed algorithm can effectively re-move rain streaks on both the synthetic data set and the real dataset while preserving complete background information,and has a good rain removal effect.

吴甜甜;李延恺;刘阳

长安大学信息工程学院,陕西 西安 710018

计算机与自动化

单幅图像去雨频率注意力卷积网络循环网络离散余弦变换

single image rain removalfrequency attentionconvolutional networksrecurrent neural networkdiscrete cosine transform

《计算机与现代化》 2024 (002)

50-55 / 6

10.3969/j.issn.1006-2475.2024.02.008

评论