| 注册
首页|期刊导航|计算机与现代化|改进生成对抗网络的图像去雾算法

改进生成对抗网络的图像去雾算法

刘彦红 杨秋翔

计算机与现代化Issue(2):56-63,8.
计算机与现代化Issue(2):56-63,8.DOI:10.3969/j.issn.1006-2475.2024.02.009

改进生成对抗网络的图像去雾算法

Image Dehazing Algorithm with Improved Generative Adversarial Network

刘彦红 1杨秋翔1

作者信息

  • 1. 中北大学软件学院,山西 太原 030051
  • 折叠

摘要

Abstract

In hazy weather,visible light scattering and absorption occur when passing through the atmosphere,resulting in poor image quality,information blocking or loss.Based on this,we propose an improved generative adversarial network(GAN)image dehazing algorithm,which learns to generate dehazed images in the generator and discriminator adversarial.In the generator,a three-row multi-column multi-scale fused attention network(Grid-G)is proposed to introduce channel attention and pixel atten-tion to process the thick haze region and high frequency region of the image from different angles,respectively.In the discrimina-tor,the high and low frequency information in the image is introduced to construct the fused discriminator(FD-F),which is used as a source of additional a priori discriminative images.Experiments on synthetic and real data in the RESIDE dataset show that the algorithm outperforms the rest of the comparison algorithms in terms of peak signal-to-noise ratio and structural similar-ity,achieves better dehazing effects,and effectively improves problems such as color distortion.

关键词

图像去雾/生成对抗网络/融合鉴别器

Key words

image dehazing/generative adversarial network/fusion discriminator

分类

信息技术与安全科学

引用本文复制引用

刘彦红,杨秋翔..改进生成对抗网络的图像去雾算法[J].计算机与现代化,2024,(2):56-63,8.

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文